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Scaling Testing of Refactoring Engines
Melina Mongiovi, Rohit Gheyi (advisor)

Abstract—Defining and implementing refactorings is a nontrivial task since it is difficult to define preconditions to guarantee that the
transformation preserves the program behavior. Therefore, refactoring engines may apply incorrect transformations in which the
resulting program does not compile, preserve behavior, or follow the refactoring definitions. These engines may also prevent correct
transformations due to overly strong preconditions. We find that 84% of the test suites of Eclipse and JRRT are concerned to detect
those kinds of bugs. However, the engines still have them. Researchers have proposed a number of techniques for testing refactoring
engines. Nevertheless, they may have limitations related to the bug type, program generation, time consumption, and number of
refactoring engines necessary to evaluate the implementations. We propose and implement a technique to scale testing of refactoring
engines. We improve expressiveness of a program generator and use a technique to skip some test inputs to improve performance.
Moreover, we propose new oracles to detect behavioral changes using change impact analysis, overly strong preconditions by
disabling preconditions, and transformation issues. We evaluate our technique in 28 refactoring implementations of Java (Eclipse and
JRRT) and C (Eclipse) and find 119 bugs. The technique reduces the time in 96% using skips while missing only 6% of the bugs.
Additionally, it finds the first failure in general in a few seconds using skips. Finally, we evaluate our proposed technique by using other
test inputs, such as the input programs of Eclipse and JRRT refactoring test suites. We find 31 bugs not detected by the developers.

Index Terms—Refactoring Engines, Software Testing, Program Generation, Program Analysis
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1 INTRODUCTION

Refactoring is the process of changing a program to improve its
internal structure while preserving its observable behavior [1],
[2], [3]. Refactorings can be applied manually, which may be
time consuming and error prone, or automatically by using a
refactoring engine, such as Eclipse [4], NetBeans [5], and JastAdd
Refactoring Tools (JRRT) [6], [7], [8], [9]. These engines contain
a number of refactoring implementations, such as Rename Class,
Pull Up Method, and Encapsulate Field. For correctly apply-
ing a refactoring, and thus, ensuring behavior preservation, the
refactoring implementations might need to consider a number
of preconditions, such as checking whether a method or field
with the same name already exists in a type. However, defining
and implementing preconditions is a nontrivial task. Proving the
correctness of the preconditions with respect to a formal semantics
of complex languages such as Java, constitutes a challenge [10].

In practice, refactoring engine developers may implement
the refactoring preconditions based on their experience, some
previous work [11], or formal specifications [6]. However, the
implemented preconditions may be overly weak, allowing non-
behavior preserving transformations or overly strong, preventing
developers from applying useful transformations. Also, the imple-
mentation may not follow the refactoring definition [1], [2], [6],
[12]. Therefore, refactoring engines may have bugs [13], [14].

In general, developers of refactoring engines manually write
test cases to detect overly weak preconditions, overly strong pre-
conditions, and transformations that do not follow the refactoring
definition (transformation issues), which may be time consuming
and error prone. We investigate the test suites of 20 refactoring
implementations of Eclipse JDT 4.5 and JRRT (02/03/13) and find
that 84% of the test assertions are concerned with identifying those
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kinds of bugs. Nevertheless, the bugs are still present. Testing
refactoring engines is not trivial since it requires complex inputs,
such as programs, and an oracle to define the correct resulting
program or whether the transformation must be rejected. Manually
writing test cases may be costly, and thus it may be difficult
to create a good test suite considering all language constructs.
Researchers have proposed a number of automated techniques
for testing refactoring engines [14], [15], [16], [17]. They may
automate four major steps of the testing process: (i) generating
test inputs; (ii) applying the refactoring; (iii) checking the output
correctness; (iv) and classifying the detected failures into distinct
bugs. However, the previous approaches have limitations related
to the kinds of bugs that can be detected, program generator
(exhaustiveness, setup, expressiveness), time consumption, or
number of refactoring engines necessary to evaluate a refactoring
implementation.

In this work, we propose a technique to scale testing of refac-
toring engines. It automatically generates programs as test inputs
using DOLLY, an automated and exhaustive Java and C program
generator. Our technique can find bugs related to overly weak
preconditions (compilation errors and behavioral changes), overly
strong preconditions, and transformation issues. We improve a
previous technique [14] with respect to DOLLY’s expressiveness,
reduction of the time to test the refactoring implementations, and
new oracles to detect behavioral changes, overly strong precon-
ditions, and transformation issues. We add more Java constructs
in DOLLY to improve its expressiveness, extend it to generate
C programs, propose a technique to skip some consecutive test
inputs to reduce the costs and improve performance [18], present
an oracle to identify overly strong preconditions without needing
reference implementations [19], propose an oracle to identify be-
havioral changes [20] using change impact analysis, and introduce
two oracles to identify a new kind of bug related to transformation
issues.

Our technique may reduce the time to test the refactoring
implementations by skipping some consecutive test inputs. Con-
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secutive programs generated by DOLLY tend to be very similar,
potentially detecting the same kind of bug. Thus, developers can
set a parameter to skip some programs to reduce the time to test the
refactoring implementations. By skipping these programs, we can
reduce the Time to First Failure (TTFF), reducing the developer
idle time [21]. We improve the expressiveness of DOLLY by
adding abstract classes, abstract methods, and interfaces. By im-
proving the expressiveness of the program generator, the technique
may find more bugs.

The previous techniques [13], [14] use a set of oracles to
evaluate the correctness of the transformations related to overly
strong preconditions, compilation errors, and behavioral changes.
We propose SAFEREFACTORIMPACT as the oracle to detect be-
havioral change transformations. SAFEREFACTORIMPACT auto-
matically checks whether a transformation preserves the program
behavior by generating test cases only for the methods impacted
by a transformation.

In our previous work [13], we use Differential Testing (DT
oracle) to identify overly strong preconditions in refactoring
engines. It applies the same refactoring to each test input using
two different implementations, and compares the results. The DT
oracle needs at least two refactoring engines. This approach can
only be used if the engines implement the same refactoring. In this
work, we propose an oracle to identify overly strong preconditions
by Disabling Preconditions (DP oracle). For each program gener-
ated by DOLLY, we apply the transformation using the refactoring
engine under test. Next, we collect the different kinds of messages
reported by the refactoring engine when it rejects transformations.
For each kind of message, we inspect the refactoring engine and
manually identify the refactoring preconditions that can raise it.
We change the refactoring engine code to allow disabling the
preconditions that prevent the refactoring. If the engine, with some
preconditions disabled applies the transformation, and it preserves
the program behavior according to SAFEREFACTORIMPACT [20],
then we classify the set of disabled preconditions as overly strong.

We propose two oracles to identify transformation issues in
refactoring implementations: Differential Testing (DT) and Struc-
tural Change Analysis (SCA) oracles. DT oracle compares the
outputs of two refactoring implementations. For this, we imple-
ment a program that compares two Java programs concerning
their Abstract Syntax Tree (AST). When the outputs compile and
preserve the program behavior, we use our comparator to check if
they are different. If the comparator identifies some difference, we
manually inspect the transformations to analyze if one of them (or
both) has issues. SCA oracle automatically analyzes whether the
input and output programs have some expected properties neces-
sary to satisfy the refactoring definition. We implement a program
to check the refactoring definitions. For each output that compiles
and preserves the program behavior, the technique checks whether
the transformation follows the refactoring definition.

After identifying the failures, the proposed technique uses a
set of automated bug categorizers to classify all failing transfor-
mations into distinct bugs. In our previous work [13], we used an
approach similar to the approach proposed by Jagannath et al. [21]
(Oracle-based Test Clustering) to automate the classification of
failures related to overly strong preconditions. We implement an
automated issue categorizer to classify the outputs of DT and SCA
oracles into different kinds of issues. It is based on the kinds of
differences between the outputs (for DT oracle) and the kinds of
refactoring definitions that the transformations do not follow (for
SCA oracle). Soares et al. [14] specified a systematic, but manual

approach to categorize failures related to behavioral changes.
We automate it in this work. For simplicity we use the term
transformation to refer to a refactoring or a failing transformation.

We evaluate our proposed technique to scale testing of refac-
toring engines in 28 refactoring implementations of JRRT [6],
Eclipse JDT (Java), and Eclipse CDT (C). We generate 294,648
programs using DOLLY and find 119 bugs in a total of 49
bugs related to compilation errors, 17 bugs related to behavioral
changes, 35 bugs related to overly strong preconditions (30 bugs
using DP oracle and 24 using DT oracle), and 18 transformation
issues related to the refactoring definition. We also compare the
impact of the skip on the time consumption and bug detection
in our technique. The technique reduces the time in 90% and
96% using skips of 10 and 25 in DOLLY while missing only
3% and 6% of the bugs, respectively. By using skips, we find
the first failure related to compilation error, behavioral change,
or overly strong preconditions in general in a few seconds. So,
the refactoring engine developer can quickly find a bug in the
refactoring implementation, fix it, run our technique again to find
another bug, and so on. Before a release, tool developers can run
the technique without skip to find the missed bugs.

We detect 30 overly strong preconditions in 20 refactoring
implementations from Eclipse JDT and JRRT using the DP
oracle. So far, Eclipse developers confirmed 47% of them. It
takes around 36min to detect all overly strong preconditions of
JRRT and Eclipse. Our current setup to the test the refactoring
implementations of Eclipse is costlier than the JRRT ones. The
DP oracle takes on average a few seconds to find the first overly
strong precondition in JRRT and on average 17.41min in Eclipse.
We compare the DP oracle with our previous one (DT oracle) by
using the same input programs. The DP oracle detects 11 bugs
(37% of new bugs) not detected by the DT oracle, while missing 5
bugs (21% of the bugs detected by the DT oracle). In addition,
the DP oracle does not require using another engine with the
same refactorings to compare the results. So, whenever possible,
developers can run the DP oracle and after fixing the detected
bugs, they run the DT oracle to find more bugs.

We also perform another study in which we use programs
from the Eclipse and JRRT refactoring test suite as inputs for
our technique instead of the automatically generated ones from
DOLLY. Our goal is to analyze if our technique can find bugs
using other input programs. We evaluate the same refactoring
implementations evaluated before. We detect 23 overly strong
preconditions (17 of them were not detected using the programs
generated by DOLLY), 6 bugs related to compilation errors, and 2
bugs related to behavioral changes previously undetected by the
developers. We reported the bugs to the Eclipse developers and so
far, they did not answer. The developers do not find these bugs
because they may not have a systematic strategy to detect overly
strong preconditions, even with useful input programs in their
test suite. Additionally, they may not have an automated oracle
to check behavior preservation. We use SAFEREFACTORIMPACT

as the oracle to help us in this activity.
We evaluate our oracles to identify transformation issues in

eight refactoring implementations of Eclipse JDT and JRRT using
DOLLY with the new constructs. We scale the new version of
DOLLY to deal with a million Alloy instances. We use skip of 25
to reduce the costs and find 10 transformation issues in Eclipse
and 8 in JRRT.

In summary, we propose a technique to scale testing of
refactoring engines by reducing the costs and improving bug
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detection. The main contributions of this work [18], [19], [20]
are the following:

• New features in the program generator, DOLLY (Sec-
tion 3.1);

– Extend it to generate C programs [18];
– A skip mechanism to reduce the set of test in-

puts [18];
– New Java constructs, such as abstract classes and

methods, and interface;

• An oracle to identify overly strong preconditions in
refactoring implementations by disabling some precondi-
tions [19] (Section 3.3);

• Two oracles to identify transformation issues (Sec-
tion 3.4);

• SAFEREFACTORIMPACT, an oracle to detect behavioral
change transformations based on change impact analysis
and test generation [20] (Section 3.2);

• An extensive evaluation of the proposed technique in 28
refactoring implementations of JRRT, Eclipse JDT (Java),
and Eclipse CDT (C) (Section 4).

2 MOTIVATING EXAMPLES

In this section, we present some bugs related to overly strong
preconditions and transformation issues in refactoring engines.
First, we show a transformation rejected by Eclipse due to an
overly strong precondition. Consider Listing 1, illustrating part of
a program that handles queries to a database. It provides support
for two database versions. Each version is implemented in a class:
QueryV1 (database version 1) and QueryV2 (database version 2).
They enable client code to swap in support for one version, or
another. Those classes extend a common abstract class Query,
which declares an abstract method createQuery. This method is
implemented in each subclass in a different way. A query created
by the createQuery method is executed by the doQuery method.
Notice that this method is duplicated in both subclasses: QueryV1
and QueryV2.

We can pull up the doQuery method to remove duplication.
Using Eclipse JDT 2.1 to apply this refactoring, it warns that
the doQuery method does not have access to createQuery. This
precondition checks whether after the transformation, the pulled
up method still has access to all of its called methods. However,
createQuery already exists as an abstract method in the Query
class, which indicates that this precondition is overly strong. This
bug was reported in Eclipse’s bug tracker.1 Kerievsky reported it
when he was working out mechanics for a refactoring to introduce
the Factory Method pattern [22]. He argued that “there should be
no warnings as the transformation is harmless and correct.” The
Eclipse developers fixed this bug. Listing 2 illustrates a correct
resulting program applied by Eclipse JDT 4.5. We found more
than 40 bugs related to overly strong preconditions in the bug
tracker of Eclipse. As of this writing, the Eclipse developers have
already fixed more than 50% of them.

We also present a transformation applied by JRRT (02/03/13)
in which the resulting program compiles and preserves behavior
but it is not correct according to the refactoring definition. Con-
sider a program that contains two packages: p1 and p2. The first
one contains two classes A and its subclass B. Class A declares a

1. https://bugs.eclipse.org/bugs/show_bug.cgi?id=39896

method m. Package p2 contains class B that also extends class A
(see Listing 3). By applying the Push Down Method refactoring
in method A.m using JRRT, it removes a class from the program.
The transformation moves the method to only one of its subclasses
(p2.B) and removes the other subclass (p1.B). Listing 4 illustrates
the resulting program.

The Push Down refactoring does not intend to remove classes
from the program, this is neither the case of an overly strong
precondition nor an overly weak precondition, but it is a transfor-
mation issue in the refactoring implementation. There are other
similar scenarios that JRRT applies the transformations without
removing entities. For example, JRRT would not remove class
(p1.B) if it had a different name.

We also investigated the test suite of 10 refactorings from
Eclipse JDT 4.5 and JRRT: Rename Method, Rename Field,
Rename Type, Add Parameter, Encapsulate Field, Move Method,
Pull Up Method, Pull Up Field, Push Down Method, and Push
Down Field. We classified a total of 2,559 assertions and find that
32% of them are concerned to overly strong preconditions, 10%
to overly weak preconditions, 11% to transformation issues, 31%
to overly weak preconditions and transformation issues, and 16%
to other concerns. This way, we observe that Eclipse and JRRT
developers are indeed concerned with identifying overly strong
preconditions, overly weak preconditions, and transformation is-
sues in their refactoring implementations. However, they may not
seem to have a systematic way and automated oracles to create
test cases to assess the refactoring implementations with respect
to those kind of bugs.

3 TECHNIQUE

We propose a technique to scale testing of refactoring engines.
First, it generates programs as test inputs using DOLLY [18], an
automated program generator (Step 1). DOLLY receives as input
the refactoring type, the language (Java or C), a skip number
that may reduce the number of generated programs, and an Alloy
specification, which includes specific constraints to a refactoring
type and the program scope. Next, the refactoring is automatically
applied to each generated program (Step 2). To evaluate the
transformations correctness, our technique uses a set of oracles
that can identify compilation errors, behavioral changes, overly
strong preconditions, and transformation issues (Step 3). Finally,
it automatically categorizes the detected failures into distinct bugs
(Step 4). Figure 1 illustrates the main steps. Next, we explain
DOLLY (Section 3.1) and the proposed oracles to detect behavioral
changes (Section 3.2), overly strong preconditions (Section 3.3),
and transformation issues (Section 3.4).

3.1 DOLLY

DOLLY is an automated and bounded-exhaustive Java
(JDOLLY [13], [14] and C (CDOLLY [18]) program generator
based on Alloy, a formal specification language [23]. DOLLY

receives as input an Alloy specification with the scope, which
is the maximum number of elements (classes, methods, fields, and
packages) that the generated programs may declare, and additional
constraints for guiding the program generation. It uses the Alloy
Analyzer tool [24], which takes an Alloy specification and finds a
finite set of all possible instances that satisfy the constraints within
a given scope. DOLLY translates each instance found by the Alloy
Analyzer to a Java or C program. It reuses the syntax tree available
in Eclipse JDT for generating programs from those instances.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=39896
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p u b l i c a b s t r a c t c l a s s Query {
p r o t e c t e d a b s t r a c t SDQuery c r e a t e Q u e r y ( ) ;

}

p u b l i c c l a s s QueryV1 ex tends Query {
p u b l i c vo id doQuery ( ) {

SDQuery sd = c r e a t e Q u e r y ( ) ;
/ / e x e c u t e query

}
p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 1
}

}

p u b l i c c l a s s QueryV2 ex tends Query {
p u b l i c vo id doQuery ( ) {

SDQuery sd = c r e a t e Q u e r y ( ) ;
/ / e x e c u t e query

}
p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 2
}

}

Listing 1. It is not possible to pull up doQuery method from QueryV1
and QueryV2 classes to Query class using Eclipse JDT 2.1 due to
overly strong preconditions.

p u b l i c a b s t r a c t c l a s s Query {
p r o t e c t e d a b s t r a c t SDQuery c r e a t e Q u e r y ( ) ;
p u b l i c vo id doQuery ( ) {

SDQuery sd = c r e a t e Q u e r y ( ) ;
/ / e x e c u t e query

}
}

p u b l i c c l a s s QueryV1 ex tends Query {
p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 1
}

}

p u b l i c c l a s s QueryV2 ex tends Query {
p r o t e c t e d SDQuery c r e a t e Q u e r y ( ) {

/ / c r e a t e query f o r t h e d a t a b a s e v e r s i o n 2
}

}

Listing 2. Correct resulting program.

package p1 ;
p u b l i c c l a s s A {

p u b l i c i n t m( ) {
re turn 1 ;

}
}
package p2 ;
import p1 . ∗ ;
p u b l i c c l a s s B ex tends A {}
package p1 ;
p u b l i c c l a s s B ex tends A {}

Listing 3. Pushing down method A.m() using JRRT (02/03/13)
removes a class from the program.

package p1 ;
p u b l i c c l a s s A {}
package p2 ;
import p1 . ∗ ;
p u b l i c c l a s s B ex tends A {

p u b l i c i n t m( ) {
re turn 1 ;

}
}

Listing 4. Resulting program.

Fig. 1. A technique to scale testing of refactoring engines.

In this work, we extend DOLLY to generate C programs,
add new features in DOLLY to increase its expressiveness, al-
low larger scopes, and reduce the cost to test the refactoring
implementations [18]. We increase the expressiveness of DOLLY

by generating programs considering more Java constructs, such
as abstract classes and methods, and interface. We also add a
new feature to skip some Alloy instances to reduce the number
of generated programs and consequently the time to test the
refactoring implementations.

3.1.1 Generating C Programs

We extend DOLLY to generate C programs. For this, we specify
in Alloy a subset of the C meta-model. A C program may declare
some functions. We specify the signature Function representing
the functions of a program. A function can have parameters, a
sequence of statements, and one return type.

sig Function {
param: lone LocalVar,
stmt: seq Stmt,
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returnType: one Type
}

For simplicity, all functions contain at most one parameter
and we consider only the primitive types int and float in the
specification. A function return type can be void or a primitive
type. The statements of a function can be variable attributions
(VarAttrib), a return statement (Return), local variable declarations
(LocalVarDecl), or #ifdef declaration (IfDef ). We have also con-
sidered programs with global variables and some C preprocessor
directives such as #define, #ifdef, and #endif.

We specify well-formedness rules within Alloy facts to avoid
C programs that do not compile. For example, the following fact
specifies that if the return type of a function is not void the function
must have a Return statement. The operator & denotes the set
intersection operator.

fact WellFormednessRules {
all f: Function |
f·returnType 6= Void ⇒
#f·stmt·elems & Return = 1

···
}

We also specify some additional rules to cope with state
explosion. For example, the predicate optimization does not allow
functions with more than four statements. Moreover, all statements
must be distinct. The relation hasDups yields whether there is
some duplicate in the sequence.

pred optimization [] {
all f: Function | #f·stmt < 5
all f:Function | not f·stmt·hasDups
···

}

Similarly, we specify other elements of C’s abstract syntax
and other well-formedness rules. Notice that a sequence in Alloy
may have a substantial impact in the number of Alloy instances
generated by the Alloy Analyzer. Consider that a sequence may
have at most k elements and n kinds of statements. The maximum

number of valid sequences is
k∑

i=0

ni. This number is multiplied by

the number of all possible combinations of other elements of the
specification.

3.1.2 New Java program constructs
We add more Java constructs in DOLLY to increase its expressive-
ness and find more kinds of bugs. The first step is modifying the
Java meta-model in Alloy used by DOLLY. To represent an abstract
method in the Java meta-model used by DOLLY, we allow creating
methods without body. We change the multiplicity of the relation
Method -> Body from one to lone (see the following fragment of
the specification).

sig Method {
···
b: lone Body

}

Adding new Alloy signatures or relations may increase the
number of Alloy instances for a given scope. We implement the
new specification by focusing on minimizing this effect.

DOLLY considers interfaces as a special type of class because
adding a new Alloy signature in the model may be costly. We

add the relation implement in the Class signature to allow a class
to implement an interface. The following specification fragment
illustrates this relation.

sig Class extends Type {
···
implement: lone Class

}

We add some well-formedness rules to reduce the number of
uncompilable programs considering all the specified constructs
without reducing the expressiveness of DOLLY. For example, an
abstract method cannot be called. The following fact specifies that
there is no abstract method related to a method invocation.

fact noAbstractMethodInvocation {
no m: Method | some mi: MethodInvocation |
mi.id = m.id && isAbstract[m]

}

We specify other well-formedness rules related to abstract
classes and methods, and interface in the Java meta-model. We
provide them in our website.

3.1.3 Skipping programs
By default, DOLLY exhaustively searches for all possible combina-
tions yielded by the run command. Even for a small scope, DOLLY

may generate thousands of programs. However, the Alloy Ana-
lyzer may generate a number of similar consecutive instances [25].
Inspired on a previous technique [21], we allow developers to
guide the program generation by skipping some instances. By
skipping some consecutive programs, we can reduce the number
of failures related to the same bug. For a skip n, which n is a
positive integer, DOLLY generates one program from an Alloy
instance, and jumps the following n-1 Alloy instances. It follows
this approach until the Alloy Analyzer has no more instances
to generate. We implement the skip mechanism by modifying
the DOLLY’s source code to discard the skipped Alloy instances
instead of translating each one into a program.

3.2 SAFEREFACTORIMPACT

SAFEREFACTORIMPACT receives two versions of a program as in-
put and yields whether they have the same behavior. It uses change
impact analysis to generate tests only for the entities impacted by
the transformation. By comparing two versions of a program, it
identifies the methods impacted by the transformation (Step 1.1).
We implemented a tool, called SAFIRA, to perform the change
impact analysis, which identifies the public and common impacted
methods in both program versions from the impacted set (Step
1.2). Next, SAFEREFACTORIMPACT generates a test suite for the
previously identified impacted methods using Randoop [26], an
automatic test suite generator (Step 2). Since the tool focuses on
identifying common methods, it executes the same test suite before
(Step 3.1) and after the transformation (Step 3.2). Finally, the tool
evaluates the results after executing the test cases: if the results
are different, the tool reports a behavioral change, and yields the
test cases that reveal it. Otherwise, we improve confidence that the
transformation is behavior preserving (Step 4). Figure 2 illustrates
the described process.

The goal of the change impact analysis step is to analyze the
original and modified programs, and yield the set of methods
impacted by the transformation. First, we decompose a coarse-
grained transformation into smaller transformations. For each
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Fig. 2. SAFEREFACTORIMPACT’s technique.

small-grained transformation, we identify the set of impacted
methods. We formalized the impact of small-grained transforma-
tions in laws that specify the methods impacted by the transforma-
tion. For example, we specify the impact of adding or removing a
method. Law 1 adds the method m in the class C when applying
it from left to right, and removes the method when applying
it from right to left. The set of impacted methods is the same
in both directions. We use ↔ to specify the impacted set for
both directions. The transformation may change other program
components but this law only identifies the impact of adding m
method. If class B is Object, and C does not have a subclass, the
set of impacted methods is C.m. Otherwise, other methods may be
impacted due to overloading and overriding.

The next step consists of identifying the union of the set of im-
pacted methods of each small-grained transformation. Moreover,
we also identify the methods that exercise an impacted method
directly or indirectly. Finally, we yield the set of impacted methods
by the transformation, which is the union of directly and indirectly
impacted methods.

3.3 Detecting overly strong preconditions

In this section, we explain our proposed technique to detect overly
strong preconditions in refactoring implementations using the DP
oracle. Our technique receives as input a refactoring implemen-
tation, the DP changes used to allow disabling the preconditions,
and some parameters to configure DOLLY, such as skip, scope,
and additional constraints. Each precondition checks whether the
transformation may introduce a specific problem in the program,
which can result in compilation errors or behavioral changes. The
technique returns the modified refactoring implementation, and all
transformations that yield a set of overly strong preconditions in
the original refactoring implementation. Figure 3 illustrates the
main steps of our technique.

First, DOLLY automatically generates programs as test inputs
(Step 1). Next, the refactoring implementation under test attempts
to apply the transformations to each generated program. If the
refactoring implementation rejects a transformation, we collect
the messages reported to the user (Step 2). For each kind of
message, we inspect the refactoring implementation code and
manually identify the code fragments related to the precondition
that raises it. We assume, for each refactoring implementation,
that there is one precondition related to each kind of message.
Then, we modify the refactoring implementation code by adding
If statements to allow disabling the execution of the identified
precondition using the DP changes (Step 3). The goal is to apply
the transformation instead of reporting the message again.

Once the technique changes the refactoring implementation
code to allow automatically disabling the preconditions, we eval-
uate them. For each transformation rejected by the refactoring

implementation, it automatically tries to apply the same transfor-
mation again with a disabled precondition (Step 4). If the refactor-
ing implementation rejects the transformation and reports another
message, it repeats the process by disabling more preconditions
until the refactoring implementation applies a transformation. If
the modified refactoring implementation applies the transforma-
tion and the resulting program preserves the program behavior
according to SAFEREFACTORIMPACT, then the technique clas-
sifies the set of disabled preconditions as overly strong (Step
5). Otherwise, it analyzes the next rejected transformation. Once
we classify a precondition as overly strong, we do not evaluate
it again with other inputs generated by DOLLY that yield the
same message. Algorithm 1 summarizes the main steps. Next, we
explain in more details the process of disabling the preconditions.

3.3.1 Disabling Refactoring Preconditions
In this step, we change the refactoring implementation code to
allow disabling the execution of refactoring preconditions that
prevent the engine from applying the refactorings. We use the
identified messages in Step 3.2.1. For each refactoring engine, we
identify how to avoid reporting messages to the user (Step 3.3),
and all places (Step 3.4.1) that can prevent reporting a message
(msg). In Eclipse, we have to avoid adding errors or warnings in
RefactoringStatus objects containing msg. In JRRT, we have to
avoid throwing a RefactoringException containing msg. The goal
is to change the refactoring implementation to avoid reporting
messages by including If statements (Step 3.4.2). We formalize
these transformations with DP Changes.

A DP change specifies a Java program template before and
after the code modification. The left-hand side template specifies
the method body in a Java program. When the code fragment
that we want to disable the precondition matches the left-hand
side template, we change the refactoring implementation code by
following the right-hand side template. Each DP change adds an
If statement in the refactoring implementation code and is applied
within a method body.

DP changes contain Java constructs and meta-variables. The
DP changes of JRRT and Eclipse have the following common
meta-variables: C specifies a class (it extends a D class); ds
specifies a set of class and interface declarations of the refactoring
implementation code; m specifies a method name; T specifies a
type name; Stmts specifies a sequence of statements; msg specifies
a message reported to the user by the refactoring implementation
when it rejects a transformation; and cs specifies a set of class
structures, such as methods, attributes, inner classes, and static
blocks. C contains cs and declares m, which contains Stmts and
calls a method by passing msg as a parameter. Meta-variables
equal on both sides of a DP change means that the transformation
does not modify them.

We specify one DP change for JRRT and two for Eclipse in our
evaluation presented in Section 4. The left-hand side template of
a DP change specifies a C class in the refactoring implementation
code, which can extend a D class, and other classes and interfaces
declarations of the refactoring implementation code (ds). C may
contain a set of class structures, such as methods, attributes, inner
classes, and static blocks (cs). It also declares the m method, which
has a return type T and a sequence of statements (Stmts).

For each refactoring implementation, we create a class (Condi-
tions) that declares public static boolean fields (cond1, cond2, ...,
condN). For each message (msgi) that a refactoring implementa-
tion yields in Step 2, we create a boolean variable condi associated
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Law 1. 〈Add/Remove Method〉
cds
class C extends B {

fds;
mds;

}

→

cds′

class C extends B {
fds′;
mds′;
m(. . .) {. . .}

}

(↔) {n:Method | ∃ E:Class · (F < E ∧ E ≤ C) ∧ (n ∈ methods(cds′) ∪ mds′) ∧ n = E.m}, where F is the closest subclass of C
such that overrides m.

Fig. 3. A technique to detect overly strong preconditions.

to it (Step 3.2.2). condi will be used in all If statements added for
a specific msgi. Conditions declares a public static void method
enableConditions that sets all boolean variables declared in the
class to true.

DP changes help developers to systematically modify the
refactoring implementation to disable refactoring preconditions. If
there is no DP change to match, developers analyze the minimum
changes necessary to allow disabling the code fragments that
prevent the refactoring precondition to propose a new kind of
DP change. If this new kind of DP change cannot be reused to
allow disabling other preconditions, we leave it as a specific case.
We automate the DP changes proposed for Eclipse and JRRT
using aspect-oriented programming [27]. Next, we explain in more
details the DP changes in JRRT and Eclipse, and the Aspect-
Oriented implementation.

DP Changes in JRRT

JRRT always throws a RefactoringException (RefExc) that con-
tains a msg to terminate the execution and report the error message
to the user. To avoid reporting msg, we propose DP Change 1.
We include an If statement immediately before throwing a Refac-
toringException that receives as a parameter the message related
to the precondition that we wish to disable.

DP Changes in Eclipse

Eclipse implements a class (RefactoringStatus) that stores the out-
come of the preconditions checking operation. It contains meth-
ods, such as addError, addEntry, addWarning, createStatus, cre-
ateFatalErrorStatus, createErrorStatus, and createWarningStatus.
Those methods receive a message and other arguments, describing
a specific problem detected during the precondition checking. The
methods started with create return a RefactoringStatus object. The
messages are stored in the refactoring.properties file. A field from
the RefactoringCoreMessages class represents them. They can be
directly accessed by a field call or through a variable, parameter
of the method, or the return of a method call. The refactoring
implementations of Eclipse check the status of a transformation,
in a RefactoringStatus object, after evaluating the preconditions.
If it contains some warning or error messages, Eclipse rejects the
transformation and reports the messages to the user. We propose
the Eclipse DP changes by analyzing the smallest code fragment,
which we need to disable for avoiding the engine to add a new
error or warning status in a RefactoringStatus object.

DP Change 2 prevents Eclipse from reporting error messages.
It has the following specific meta-variables: status specifies an
object of RefactoringStatus type, and s is one of the methods of
RefactoringStatus described in the beginning of this section. We
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Algorithm 1 A technique to detect overly strong preconditions.
Input: refactoring implementation R, skip, scope, constraints, timeLimit, DPChanges
Step 1. progs = DOLLY.generate(skip, scope, constraints);
progs’ = ∅; . A set of pairs of programs and messages
msgs = ∅; . A set of all messages reported by R
Step 2. foreach prog ∈ progs do

msg = R.canApplyRefactoring(prog); . canApplyRefactoring yields one message, for simplicity, if R cannot apply it
if msg 6= ∅ then

progs’.add(〈prog, msg〉);
msgs.add(msg); . For simplicity, it does not show that it removes some names and keywords from msg

map = ∅; . A set of all mappings of messages to preconditions
Step 3.1. Create a class: public class ConditionsR { public static void enableConditions() {} };
Step 3.2. foreach msg ∈ msgs do

Step 3.2.1. Identify how msg is represented in R; . Specific for each refactoring engine
Step 3.2.2. Create a fresh public static boolean field (cond) in ConditionsR. Add cond = true in enableConditions;
Step 3.2.3. map.add(〈msg, cond〉); . It relates each message to a condition

Step 3.3. Identify how to prevent reporting messages to user in R; . Specific for each refactoring engine
R’ = R; . R’ will contain the modified refactoring implementation
Step 3.4. foreach msg ∈ msgs do

Step 3.4.1. places = Identify all places in R that can prevent reporting msg to user;
Step 3.4.2. foreach place ∈ places do

R’ = applyDPChange(DPChanges, R’, place, msg, map); . Add if (ConditionsR.cond) {place}. Specific for each ref. engine

transformations = ∅; . A set containing all transformations applied by R’
Step 4. foreach 〈prog, msg〉 ∈ progs’ do

Step 4.1. ConditionsR.enableConditions(); . It enables all preconditions
Step 4.2. ConditionsR.(map.getCondition(msg)) = false; . It disables a condition related to msg
Step 4.3. msg = R’.canApplyRefactoring(prog);
if msg ∈ msgs then

go to Step 4.2;
else if msg = ∅ then

transformations.add(〈prog, R’.applyRefactoring(prog)〉); . It saves a transformation that does not yield a message

else
continue; . For simplicity, it does not focus on disabling preconditions related to messages not reported in Step 2

result = ∅;
Step 5. foreach t ∈ transformations do

if SAFEREFACTORIMPACT(t.input, t.output, timeLimit).hasSameBehavior() then
result.add(t); . It saves a behavior preserving transformation applied by R’

Output: 〈R’, result〉; . It returns R’, and all transformations that yield a set of overly strong preconditions in R

include an If statement immediately before a call to a method
from the RefactoringStatus class that receives as a parameter the
message related to the precondition that we want to disable.

Aspect-Oriented Implementation

Aspect-Oriented Programming aims to increase modularity by
allowing the separation of crosscutting concerns [28]. Disabling
refactoring preconditions can be seen as a crosscutting concern of
the refactoring engine. We implemented in AspectJ [29] all DP
changes. The abstract aspect DisablingPreconditions (Listing 5),
declares an abstract pointcut methodMsg to collect calls to meth-
ods with a String parameter (msg). The pointcut refers to the left-
hand side of a DP change. It also declares an around advice to
allow executing only the methods collected in methodMsg, which
the list Messages.reportedMsgs does not contain msg (executePre-
cond method). While DP changes include an If statement in the
right-hand side program, the aspects use the around advice to
achieve the same goal, avoiding some method executions in the
resulting program. Messages.reportedMsgs stores the messages

related to the preconditions that we want to disable and msg is
the message related to the evaluated precondition. We implement
specific aspects to disable the preconditions of Eclipse and JRRT.
They extend DisablingPreconditions. Developers can extend the
aspects if they need to create more DP changes. They need to
specify the pointcut to collect specific method calls and implement
the advice to allow disabling the preconditions.

p u b l i c a b s t r a c t a s p e c t D i s a b l i n g P r e c o n d i t i o n s {
a b s t r a c t p o i n t c u t methodMsg ( S t r i n g msg ) ;

void around ( S t r i n g msg ) : methodMsg ( msg ) {
i f ( e x e c u t e P r e c o n d ( msg ) ) {

proceed ( msg ) ;
}

}

p u b l i c boolean e x e c u t e P r e c o n d ( S t r i n g msg ) {
re turn ! Messages . r e p o r t e d M s g s . c o n t a i n s ( msg ) ;

}
}
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DP Change 1. 〈Avoid throwing an exception in JRRT〉
ds
class C extends D {

cs
T m(...) {

Stmts
throw new RefExc(msg);
Stmts′

}
}

→

ds
class C extends D {

cs
T m(...) {

Stmts
if (Conditions.condN) {

throw new RefExc(msg);
}
Stmts′

}
}

DP Change 2. 〈Avoid adding a refactoring status in Eclipse〉
ds
class C extends D {

cs
T m(...) {

Stmts
status.s(...,msg, ...);
Stmts′

}
}

→

ds
class C extends D {

cs
T m(...) {

Stmts
if (Conditions.condN) {

status.s(...,msg, ...);
}
Stmts′

}
}

Listing 5. Abstract aspect to disable preconditions.

The specific aspect to disable the preconditions of Eclipse
avoids adding a new warning or error status in a RefactoringStatus
object. The RefactoringStatus class declares some void methods
that add a new status in a RefactoringStatus object (methods
starting with add). It also declares methods that create a new
RefactoringStatus object, add the status, and return this object
(methods starting with create). We specify a pointcut and im-
plement an advice for both kinds of methods. The methodMsg
pointcut collects calls to the addError, addWarning, and addEntry
methods of RefactoringStatus and the methodMsgNonVoid point-
cut collects calls to the createStatus, createErrorsStatus, create-
WarningStatus, and createFatalErrorStatus methods. We create
this pointcut because those methods return a RefactoringStatus
object. The refactoring implementations of Eclipse do not add
or create a new status when setting the Messages.reportedMsgs
list with the messages related to the preconditions that we want
to disable. Listing 6 illustrates the aspect used to disable Eclipse
preconditions. Similarly, we implement the aspect to disable JRRT
preconditions.

3.4 Detecting Transformation Issues
Although there is no unique formal definition for each kind of
refactoring, there are common characteristics among them that
developers of refactoring engines should follow [1], [2], [6], [12].
For example, a transformation needs to move a field from its
original class to a direct superclass to follow the Pull Up Field
refactoring definition. Here, we focus on detecting transformations
applied by refactoring engines that the resulting program compiles
and preserves behavior, but do not follow its refactoring definition.

Next, we explain the proposed oracles to detect transformation
issues: DT and SCA.

3.4.1 Differential Testing Oracle
This oracle receives as input two pairs of programs resulting
from transformations applied by refactoring engines for the same
input and refactoring type. The same input is provided to both
engines. First, the oracle executes SAFEREFACTORIMPACT to
evaluate whether the transformations applied by both engines
under test preserve the program behavior (Step 1). The following
step is only executed if both transformations compile and preserve
the program behavior. In Step 2, the technique compares the
outputs generated by the engines. We implement a program to
compare two programs concerning their AST (Abstract Syntax
Tree). First, it executes a parser and creates the abstract syntactic
tree of both programs using the Eclipse JDT API. The compara-
tor checks if the programs contain the same set of packages,
classes, interfaces, methods and fields. Next, it compares each
pair of classes, methods and fields concerning their modifiers,
types (fields and methods), parameters (methods), method bodies
(methods), initialization (fields), and imports (classes). It yields
the differences between the programs if they exist. If there are
differences between the outputs, the oracle reports them and we
check if there is a transformation issue. We manually inspect one
pair of programs of each kind of difference to analyze if there is a
transformation issue in both or one of the programs.

3.4.2 Structural Change Analysis Oracle
This oracle receives as input a transformation (pair of programs)
applied by a refactoring engine and the refactoring type of the
transformation. We implement a program to analyze the program
structure of a transformation for each refactoring type. We analyze
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p u b l i c a s p e c t D i s a b l i n g P r e c o n d i t i o n s E c l i p s e ex tends D i s a b l i n g P r e c o n d i t i o n s {
p o i n t c u t methodMsg ( S t r i n g msg ) :

c a l l ( void R e f a c t o r i n g S t a t u s . a d d E r r o r ( S t r i n g , . . ) ) && args ( msg , . . ) | |
c a l l ( void R e f a c t o r i n g S t a t u s . addWarning ( S t r i n g , . . ) ) && args ( msg , . . ) | |
c a l l ( void R e f a c t o r i n g S t a t u s . a d d E n t r y ( i n t , S t r i n g , . . ) ) && args ( i n t , msg , . . ) ;

p o i n t c u t methodMsgNonVoid ( S t r i n g msg ) :
c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e E r r o r S t a t u s ( S t r i n g , . . ) ) && args ( msg , . . ) | |
c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e W a r n i n g S t a t u s ( S t r i n g , . . ) ) && args ( msg , . . ) | |
c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e F a t a l E r r o r S t a t u s ( S t r i n g , . . ) ) && args ( msg , . . ) | |
c a l l ( R e f a c t o r i n g S t a t u s R e f a c t o r i n g S t a t u s . c r e a t e S t a t u s ( i n t , S t r i n g , . . ) ) && args ( i n t , msg , . . ) ;

R e f a c t o r i n g S t a t u s around ( S t r i n g msg ) : methodMsgNonVoid ( msg ) {
i f ( e x e c u t e P r e c o n d ( msg ) ) {

re turn proceed ( msg ) ;
} e l s e {

re turn new R e f a c t o r i n g S t a t u s ( ) ;
}

}
}

Listing 6. Aspect to disable refactoring preconditions of Eclipse.

whether the transformation follows the refactoring definition. For
example, for the Pull Up Method refactoring, the transformation
must remove the method from its original class and add the
removed method in the direct superclass of its original class. It
also must pull up all methods that are in the direct subclasses of
the target class (the methods must have the same name, return
type, parameters, and body of the refactored method), and update
all calls to the refactored methods. We also analyze additional
transformations that must not be performed, such as removing an
entity from the program. First, we check if the output program
preserves the program behavior using SAFEREFACTORIMPACT

(Step 1). If the transformation compiles and preserves the program
behavior, we check if it is applied correctly by analyzing the
structural changes of the modified program (Step 2).

4 EVALUATION

We evaluated our technique in 28 refactoring implementations
of JRRT [6], Eclipse JDT (Java), and Eclipse CDT (C).2 We
generated 294,648 programs as test inputs by using DOLLY.
Our technique found 119 bugs in a total of 49 bugs related
to compilation errors, 17 bugs related to behavioral changes,
35 overly strong preconditions (DP and DT oracles), and 18
transformation issues. Next, we explain in more details how we
evaluated our technique to identify overly strong preconditions
(Section 4.1) and transformation issues (Section 4.2). We also
evaluated our technique using the input programs of Eclipse and
JRRT refactoring test suites instead of the programs generated by
DOLLY (Section 4.3).

4.1 Overly Strong Preconditions
We evaluate our technique using the oracle proposed in this
work to detect overly strong preconditions in 10 refactoring
implementations of Eclipse and 10 refactoring implementations
of JRRT. First, we present the research questions (Section 4.1.1).
Next, we present (Sections 4.1.2) and discuss (Section 4.1.3) the
results. Finally, explain some threats to validity (Section 4.1.5) and
summarize the main findings (Section 4.1.4).

2. All complete results and experimental data are available online at http:
//www.dsc.ufcg.edu.br/~spg/mongiovi_thesis.html

4.1.1 Research Questions
Our experiment has two goals. The first goal is to evaluate the
DP oracle to detect overly strong preconditions with respect to its
ability to detect overly strong preconditions and its performance
from the point of view of refactoring engine developers in the
context of refactoring implementations from Eclipse and JRRT.
For this goal, we address the following research questions:

• Q1 Can the DP oracle detect bugs related to overly strong
preconditions in the refactoring implementations?
We measure the number of bugs related to overly strong
preconditions for each refactoring implementation.

• Q2 What is the average time to find the first failure using
the DP oracle?
We measure the time to find the first failure in all refactor-
ing implementations.

• Q3 What is the rate of overly strong preconditions detected
by the DP oracle among the set of assessed preconditions?
We measure the rate of preconditions that are overly strong
in each refactoring implementation.

The second goal is to evaluate two techniques (DP and
DT [13]) to detect overly strong preconditions in refactoring
implementations for the purpose of comparing them with respect
to detecting overly strong preconditions from the point of view
of refactoring engine developers in the context of refactoring
implementations of Eclipse and JRRT. We address the following
research question for this goal:

• Q4 Do DP and DT oracles detect the same bugs?
We measure the bugs detected by both techniques: DP and
DT oracles.

4.1.2 Summary of the Results
Concerning the JRRT evaluation, we identified 24 refactoring
preconditions and found 15 (62%) overly strong preconditions in
its refactoring implementations. The DP oracle did not detect 3
bugs using a skip of 25 in the Move Method and Push Down Field
refactorings of JRRT. It took 0.89h to evaluate all JRRT refactoring
implementations without skip to generate programs. Using skips

http://www.dsc.ufcg.edu.br/~spg/mongiovi_thesis.html
http://www.dsc.ufcg.edu.br/~spg/mongiovi_thesis.html
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of 10 and 25, the technique took 0.28h and 0.09h, respectively. In
average, the technique needed a minute to find the first failure.

Concerning the Eclipse evaluation, we identified 25 refactoring
preconditions and found 15 (60%) different kinds of bugs in
its refactoring implementations. The DP oracle did not detect 1
bug using skips of 10 and 25 in the Add Parameter refactoring
of Eclipse. It took 35.72h to evaluate all Eclipse refactoring
implementations without skip to generate programs. Using skips
of 10 and 25, the technique took 4.22h and 1.75h, respectively. It
took on average 17.41min to find the first failure using no skip.
Using skips of 10 and 25, the technique took on average 2.35min
and 1.01min to find the first failure, respectively. SAFEREFACTOR

generated an average of 45 test cases (ranging from 1 to 179) to
evaluate transformations applied by JRRT and 59 (ranging from 1
to 268) to evaluate transformations applied by Eclipse.

Given the set of generated input programs for each refactoring
implementation, we measured LOC coverage for both JRRT (AST
package) and Eclipse (org.eclipse.jdt.internal.corext.refactoring)
implementations. LOC coverage for Eclipse is 7.6%, while for
JRRT is 12.8%. The coverage rates are low because the Eclipse
org.eclipse.jdt.internal.corext.refactoring and JRRT AST packages
contain all refactorings implemented in these engines. Table 1
summarizes the evaluation results of JRRT and Eclipse refactoring
implementations.

We also compared the proposed DP oracle with the DT oracle.
The DP oracle found nine new bugs that the DT oracle could
find in the refactoring implementations of JRRT, and two new
bugs in the refactoring implementations of Eclipse. It did not
detect five bugs that the DT oracle detected in the refactoring
implementations of Eclipse. Concerning the use of skips, the DP
oracle did not detect four bugs using a skip of 25 and one bug
using a skip of 10. The DT oracle missed no bug using skips of
10 and 25. We calculated the number of missed bugs using skips
by comparing with the number of detected bugs using no skip. We
need to execute the same oracle without skip to find the missed
bugs. Table 2 summarizes the evaluation results of the comparison
between DP and DT oracles.

4.1.3 Discussion
Next, we discuss the results of our evaluation.

Assessed Preconditions

We identified 24 preconditions from JRRT and 25 preconditions
from Eclipse, based on reported messages when they reject trans-
formations. We relate each reported message to one precondition
for each refactoring implementation. Table 3 illustrates some of
the Eclipse and JRRT assessed preconditions considered in our
evaluation. For each one, we explain what the precondition checks
(fourth column), the message reported by the refactoring engine
when the precondition is unsatisfied (fifth column), and if our
technique classified it as overly strong in this study (sixth column).

For example, Precondition 1 prevents JRRT from moving a
method when it overrides (or is overwritten by) different methods
before and after the transformation. Without this precondition, the
transformation may change the program behavior. However, our
technique classified this precondition as overly strong because it
also prevents moving an overwritten method when there is no other
method in the program calling it. Precondition 4 avoids the same
problem in the Add Parameter refactoring of JRRT, since changing
a method signature may change method overriding. Our technique

also classified it as overly strong for this refactoring. Preconditions
2 and 3 prevent JRRT to push down or pull up a field to a class
that already contains a field with the same name, respectively.
Both preconditions avoid introducing compilation errors in the
resulting program, since a class cannot declare two fields with
the same name. According to this evaluation, they are not overly
strong.

Precondition 7 prevents Eclipse from moving a method to
a class that already declares a method with the same name. It
avoids introducing compilation errors and behavioral changes in
the resulting program. However, our technique found that this pre-
condition is overly strong because the methods can have different
types of parameters. Preconditions 8 and 9 prevent Eclipse from
renaming a method when there is another method in the same
package or type in the renamed method hierarchy, with the same
name but different parameter types and with the same signature,
respectively. They also avoid introducing compilation errors and
behavioral changes in the resulting program. For example, it can
introduce compilation errors related to the reduction of inherited
method visibility or can introduce behavioral changes when the
renamed method changes the binding of a method call. Our
technique classified both preconditions as overly strong because
in some cases the renamed method is not public and there is
no other method in the program calling it. This set of assessed
preconditions is a subset of the existing preconditions. The eval-
uated refactoring implementations may have more overly strong
preconditions. Developers may consider programs with different
program constructs to detect them.

We identified some patterns followed by the developers to
reject a transformation due to an unsatisfied precondition. In
these cases, we propose DP changes, and we can use them to
disable preconditions by preventing to report messages to the user.
However, in some specific cases, we did not find a pattern for the
right-hand side template to disable a precondition. So, we could
not propose DP changes to modify the refactoring implementation
to disable a precondition. We need to reason about the refactoring
implementation code to identify the specific changes necessary
to disable the precondition. We call those kinds of changes as
specific cases. We applied 58 DP changes (22 in JRRT and 36 in
Eclipse) and 25 specific cases to allow disabling the execution of
the Eclipse and JRRT assessed preconditions in this study.

Bugs Detected by DP oracle

Among the 49 assessed preconditions, we identified 30 overly
strong preconditions (61%) in the Eclipse and JRRT refactoring
implementations using the DP oracle. We manually analyzed all
bugs detected in our evaluation, and did not find the same program
yielding an overly strong precondition in two different refactoring
implementations. We reported all detected bugs to the Eclipse
developers. So far, they confirmed 47% of them (seven bugs),
and did not answer for 27% (four bugs). The remaining four bugs
were considered duplicates (13%) or invalid (13%). Developers
did not fix all confirmed bugs because they have very limited
resources working on the refactoring module. We reported the new
JRRT bugs to its developers. These bugs were not detected by our
previous technique. JRRT developers believe that most of these
bugs are due to imprecise analysis or unimplemented features. So
far, they have not answered for two of them.

The goal of our technique is to propose a systematic way
to evaluate the implemented preconditions. We do not suggest
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TABLE 1
Summary of the DP oracle evaluation in the JRRT and Eclipse refactoring implementations; Refactoring = Kind of Refactoring; Skip = Skip value

used by DOLLY to reduce the number of generated programs; GP = Number of Generated Programs by DOLLY; CP = rate of compilable programs
(%); LOC cov. = rate of Lines of Code coverage for the set of generated programs (%); N. ass. prec. = Number of assessed refactoring

preconditions in our study; OSC = Number of detected overly strong preconditions in the refactoring implementations; Time (h) = Total time to
evaluate the refactoring implementations in hours; TTFF (min) = Time to find the first failure in minutes; "na" = not assessed.

removing the overly strong preconditions found by our technique.
By removing them, the refactoring implementation may apply
incorrect transformations. Developers need to reason about the
preconditions and choose the best strategy to slightly weaken
them without making them overly weak. They can use the DP
and DT oracles and our previous technique to detect overly weak
preconditions [14] to reason about their preconditions.

Time

We computed the time for the automated steps of the DP oracle.
The time to evaluate the JRRT refactoring implementations was
smaller than the time to evaluate Eclipse ones in all cases but
two: Rename Method and Pull Up Field refactorings. In those
refactoring implementations, all assessed preconditions of Eclipse
are overly strong while this is not true for JRRT. The execution of
the technique finishes when we find that all preconditions being

tested are overly strong. The execution to evaluate Eclipse finished
earlier than the JRRT ones in the Rename Method and Pull Up
Field refactorings. However, the total time to evaluate all of JRRT
and Eclipse refactoring implementations was 0.89h and 35.72h,
respectively.

Eclipse took 11.48h and 7.15h to evaluate the Add Param-
eter and Push Down Method refactorings, respectively. These
times were higher than the time to evaluate the other refactoring
implementations. DOLLY generated more programs to evaluate
these refactoring implementations (30,186 for Add Parameter and
20,544 for Push Down Method) and only some of their assessed
preconditions were classified as overly strong. The average time
to find the first failure in the JRRT refactoring implementations
(few seconds) was also smaller than in Eclipse (17.41min). The
average time to find the first failure in Eclipse was affected by
two refactorings that took much longer than the average time to
find the first failure, namely the Push Down Method and Add
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TABLE 2
Summary of the comparison between DP and DT oracles using input programs generated by DOLLY; Refactoring = Kind of Refactoring; Skip =

Skip value used by DOLLY to reduce the number of generated programs; DP = DP oracle; DT = DT oracle; Overly Strong Preconditions = Number
of detected overly strong preconditions in the refactoring implementations; "na" = not assessed.

TABLE 3
Subset of Eclipse and JRRT assessed preconditions. Eng. = Refactoring engine that contains the precondition; Refactoring = Kind of refactoring;
Precondition = precondition checking; Message = reported message when the precondition is unsatisfied; OS (DP) = yes if the DP oracle found

this precondition as overly strong in this experiment, otherwise no.

Parameter refactorings.

Comparison of DP and DT oracles

The oracles are complementary in terms of bug detection. The DP
oracle detected 11 new bugs (37% of the bugs) that the DT oracle
cannot detect in the Pull Up Field and Add Parameter refactorings
of Eclipse and in the Move Method, Rename Method, Push Down
Method, and Push Down Field refactorings of JRRT. The DT
oracle cannot detect some bugs when the other refactoring engine
used in the differential testing has overly weak preconditions or
also has overly strong preconditions. In the former case, the other
refactoring engine applies a transformation that does not preserve
the program behavior or the resulting program does not compile.
In the latter case, the other refactoring engine also rejects to apply
the transformation.

For example, Listing 7 presents a DOLLY generated program.
It contains the A class and its subclasses B and C. Both A and B
classes contain the f field and the B class declares the test method
that calls the B.f field, yielding 1. If we attempt to use JRRT to
apply the Push Down Field refactoring from moving A.f to class
C, it rejects this transformation due to an overly strong precon-
dition. By disabling the precondition that prevents the refactoring
application, we can apply the transformation without changing
the program behavior. Listing 8 illustrates the resulting program.
The B.test method yields 1 before and after the refactoring. We
only detected this overly strong precondition using the DP oracle.

The DT oracle cannot detect it because Eclipse also rejects this
transformation. We reported this bug to JRRT developers and they
agreed that this transformation should be applied.

The DT oracle detected five bugs that the DP oracle cannot
detect in the Eclipse Push Down Method and Rename Field
refactorings. The DP oracle cannot detect those bugs because
when we disable the code fragments of a precondition, Eclipse
applies a non-behavior preserving transformation. JRRT applies a
transformation that includes a cast (two bugs in the Rename Field)
or a super modifier (one bug in the Rename Field) in a field call
to preserve the program behavior.

For example, Listing 9 presents another DOLLY generated
program. It contains the B class, and its subclass C. The B class
contains the f1 field. The C class contains the f0 field and declares
the test method that calls f1 yielding 0. By using Eclipse to rename
field C.f0 to f1, it rejects this transformation due to an overly
strong precondition. JRRT applies this transformation without
changing the program behavior. Listing 10 illustrates a resulting
program applied by JRRT. Method C.test yields 0 before and after
the refactoring. We only detected this overly strong precondition
using the DT oracle. The DP oracle cannot detect it because
when we disable the precondition, Eclipse applies a non-behavior
preserving transformation. It does not include a cast of the B class
in the field call inside the test method. Without this cast, test calls
C.f1 instead of B.f1 yielding 1.
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p u b l i c c l a s s A {
p r i v a t e i n t f = 0 ;

}

p u b l i c c l a s s B ex tends A {
p r o t e c t e d i n t f = 1 ;
p u b l i c long t e s t ( ) {

re turn f ;
}

}

p u b l i c c l a s s C ex tends A DPP{}

Listing 7. Pushing down field A.f to class C is rejected by
JRRT due to overly strong preconditions. Bug detected by
DP oracle and not detected by DT oracle.

p u b l i c c l a s s A DPP{}

p u b l i c c l a s s B ex tends A {
p r o t e c t e d i n t f = 1 ;
p u b l i c long t e s t ( ) {

re turn f ;
}

}

p u b l i c c l a s s C ex tends A {
p r i v a t e i n t f = 0 ;

}

Listing 8. A possible correct resulting program applied by
JRRT.

p u b l i c c l a s s B {
p r o t e c t e d i n t f1 = 0 ;

}

p u b l i c c l a s s C ex tends B {
p r i v a t e i n t f0 = 1 ;
p u b l i c long t e s t ( ) {

re turn t h i s . f 1 ;
}

}

Listing 9. Renaming C.f0 to f1 is rejected by Eclipse JDT
4.5 due to overly strong preconditions. Bug detected by
DT oracle and not detected by DP oracle.

p u b l i c c l a s s B {
p r o t e c t e d i n t f1 = 0 ;

}

p u b l i c c l a s s C ex tends B {
p r i v a t e i n t f1 = 1 ;
p u b l i c long t e s t ( ) {

re turn ( ( B) t h i s ) . f 1 ;
}

}

Listing 10. A possible correct resulting program applied
by JRRT.

4.1.4 Answers to the Research Questions
Next, we answer our research questions.

• Q1 Can the DP oracle detect bugs related to overly strong
preconditions in the refactoring implementations?
We found a total of 30 bugs (11 new bugs) related
to overly strong preconditions in 14 (70%) refactoring
implementations. We did not find bugs in the Push Down
Field and Rename Field refactorings of Eclipse, and Pull
Up Field, Encapsulate Field, Rename Field, and Rename
Type refactorings of JRRT.

• Q2 What is the average time to find the first failure using
the DP oracle?
The technique can find the first bug in each JRRT refac-
toring implementation in 0.59min on average. Finding
the first bug in the Eclipse evaluation took an average
of 17min. The average time to find the first failure in
Eclipse was affected by some values, such as the time to
first failure in the Push Down Method and Add Parameter
refactorings.

• Q3 What is the rate of overly strong preconditions detected
by the DP oracle among the set of assessed preconditions?
In the Eclipse and JRRT refactoring implementations, 60%
and 62% of the evaluated preconditions in this study are
overly strong, respectively.

• Q4 Do DP and DT oracles detect the same bugs?
The oracles detect 19 bugs in common. The DT oracle
cannot detect 11 bugs that the DP oracle detected in
the Add Parameter and Pull Up Field refactorings of
Eclipse, and in the Move Method, Push Down Field,
Rename Method, and Push Down Method refactorings

of JRRT. When both refactoring engines under test have
overly strong preconditions, the DT oracle fails to detect
bugs. The DT oracle detected 5 bugs in Eclipse that the
DP oracle cannot detect in the Push Down Method and
Rename Field refactorings of Eclipse.

4.1.5 Threats to Validity

In this section, we discuss some threats to the validity of our
evaluation.

Construct Validity

Construct validity refers to whether the overly strong precon-
ditions that we have detected are indeed overly strong. Eclipse
developers considered two bugs reported by us as invalid. Some
preconditions that we found may not be overly strong with
respect to the equivalence notion adopted by the developers. Our
equivalence notion is related to the behavior of the public methods
with unchanged signatures. These methods can exercise methods
with changed signatures. Otherwise, the methods with changed
signatures may not affect the overall system behavior. So far, they
have confirmed 47% of the reported bugs.

We have no prior knowledge over the refactoring engines’
code, since we are not developers of these engines. We may
not identify all code fragments related to the preconditions being
tested. We minimize this threat by systematizing the process of
disabling preconditions. We propose DP changes where each one
alters one line of code. Even the specific cases change a few lines
of code. Finally, we specify in Table 3 some preconditions based
on the available source code and documentation of JRRT and
Eclipse [6], [7], [9], [11], [30], [31], [32], [33]. Still, some defini-
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tions may be incomplete or incorrect as we are not developers of
the refactoring engines.

Internal Validity

Additional constraints in JDOLLY may hide possibly detectable
overly strong preconditions. These constraints can be too re-
strictive with respect to the programs that can be generated by
JDOLLY, which shows that one must be cautious when specifying
constraints for JDOLLY. Our current setup for testing Eclipse has
memory leaks. This may have an impact on the time to test its
refactoring implementations. Another threat is related to the bugs
detected only by the DP technique. The DT technique did not iden-
tify some bugs because the other engine (JRRT or Eclipse) used
to perform differential testing also has overly strong preconditions
or overly weak preconditions that allow incorrect transformations.
Using another refactoring engine to perform differential testing
may identify some of those bugs.

External Validity

We can use our technique to test other refactoring implementations
and other refactoring engines. To test different refactoring imple-
mentations, we have to adapt at most two steps of our technique
(Steps 1 and 3.4.2 in Algorithm 1). We have to analyze whether
JDOLLY generates programs that can be refactored. Moreover, we
may need to propose more DP changes to disable preconditions.
For example, we can setup our technique to test the Move Field
refactoring by reusing our Java meta-model and well-formedness
rules. We need to generate programs with at least two classes
(C1 and C2) and one field (F1) in one of the classes. We did not
evaluate more refactoring implementations due to time constraints.

To test different refactoring engines such as NetBeans, we may
have to adapt Steps 1, 3.2.1, 3.3 and 3.4.2 of our technique. In
Step 1, we follow the same guidelines to test other refactoring
implementations. In Step 3.2.1, we have to identify how a reported
message is represented in the refactoring implementation. In Net-
Beans, the Bundle.properties file defines variables that represent
reported messages. In Step 3.3, we have to identify how to prevent
reporting messages to the user. NetBeans refactoring implemen-
tations create an object of type Problem, which receives as pa-
rameter a message describing the problem when a precondition is
unsatisfied. We have to prevent creating this kind of object. Finally,
in Step 3.4.2, we have to propose DP Changes. Before applying a
transformation, the NetBeans refactoring implementations check
whether there are problems with the transformation, and report
the messages to the user, when applicable. We can propose DP
changes to avoid creating an object of type Problem by adding an
If statement before its creation.

We performed a feasibility study to evaluate some refactoring
implementations of NetBeans 8.2. We found a bug by using the DP
technique. NetBeans 8.2 cannot pull up C.f to B.f in the program
presented in Listing 11. It reports the following message: Member
“f ” already exists in the target type. By disabling this precondition,
we can apply a behavior preserving transformation.

package p1 ;
p u b l i c c l a s s A {

p r o t e c t e d i n t f = 0 ;
}

package p1 ;
p u b l i c c l a s s B ex tends A {}

package p0 ;
import p1 . ∗ ;
p u b l i c c l a s s C ex tends B {

p r o t e c t e d i n t f = 1 ;
p u b l i c long m( ) {

re turn t h i s . f ;
}

}

Listing 11. Pulling up field C.f to class B is rejected by NetBeans 8.2 due
to an overly strong precondition.

4.2 Transformation Issues
We evaluate our technique using the oracles proposed in this work
to detect transformation issues in eight refactoring implementa-
tions of Eclipse and JRRT. First, we present the research questions
(Section 4.2.1). Next, we present (Sections 4.2.2) and discuss
(Section 4.2.3) the results. Finally, explain some threats to validity
(Section 4.2.4) and summarize the main findings (Section 4.2.5).

4.2.1 Research Questions
The goal of our experiment is to analyze our technique concerning
the transformation issues detection in refactoring engines for the
purpose of evaluating it with respect to issues related to transfor-
mations that do not follow the properties of each refactoring type.
For this goal, we address the following research questions:

• Q1 Can the proposed technique using the DT and SCA
oracles detect transformation issues in the refactoring
engines?
We measure the number of transformation issues detected
by the technique using the DT and SCA oracles for each
kind of refactoring implementation.

• Q2 Do the DT and SCA oracles detect the same issues?
We analyze the transformation issues detected by both
oracles: DT and SCA.

• Q3 What is the time to test the refactoring implementation
using the technique with DT and SCA oracles?
We measure the total time to test each refactoring imple-
mentation using the technique with DT and SCA oracles.

4.2.2 Results
DOLLY used the Alloy Analyzer to generate up to 1,051,608 in-
stances (Pull Up Field refactoring), which corresponded to 42,064
generated programs using skip of 25. The rate of compilable
generated programs was at least 97% in each refactoring. For
some kinds of refactorings, the number of rejected transformations
was high. For example, in the Pull Up Field refactoring, both
engines did not apply 41,721 transformations, among the set of
42,064 generated programs. On the other hand, JRRT applied all
transformations in the Push Down Method refactoring.

The technique using the SCA oracle found 10 and 8 transfor-
mation issues in the refactoring implementations of Eclipse and
JRRT, respectively. We found no issue in the Pull Up Field refac-
toring. It took 39.26h to evaluate the refactoring implementations
of Eclipse and 36.91h to evaluate the refactoring implementations
of JRRT. Table 4 illustrates the result of the technique using the
SCA oracle.

The technique using DT oracle found two and three transfor-
mation issues in the refactoring implementations of Eclipse and
JRRT, respectively. We also found no issue in the Pull Up Field
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refactoring. It took a total of 75.83h to evaluate all refactoring
implementations. Table 5 illustrates the result of the technique
using DT oracle.

4.2.3 Discussion
In this section, we discuss the results of our evaluation concerning
the transformation issues detected, issue report, time to test the
refactoring implementations, and the new version of DOLLY with
abstract methods, abstract classes, and interface.

Transformation Issues Detected by Both Oracles

Since the DT oracle can only analyze transformations that both
engines apply and the outputs compile and preserve the program
behavior, we may miss some issues. Despite this, the detected
issues assisted us to improve the refactoring definitions used to
analyze the transformations in the SCA oracle. For example, we
found a transformation applied by JRRT removes a class and from
the program. Based on this detected issue, we added a refactoring
definition that no transformation can remove an entity from the
program. In addition to reading some proposed informal refac-
toring definitions, we suggest executing the technique using DT
oracle before implementing the SCA oracle for each refactoring
type. As we explained before, the detected issues can assist us to
define the set of refactoring definitions used by the SCA oracle.
We implemented the SCA and DT oracles in Java and executed
the experiment using the new version of DOLLY with abstract
methods, abstract classes, and interface.

The technique using the SCA oracle detected all issues de-
tected by the technique using DT oracle. The technique using the
DT oracle did not detect some issues because we only analyze
the transformations applied by both engines that compile and
preserve the program behavior. Figure 4 shows an issue in the
Encapsulate Field refactoring of Eclipse JDT 4.5 detected by the
technique using the SCA oracle. The original program presented
in Listing 12 contains class A, which declares field f and method
getF returning 0. Applying the Encapsulate Field refactoring in
field f, choosing the default get/set names, the transformation does
not create the correct getF method because there is a method with
the same signature in the class (see Listing 13). So, the field is not
correctly encapsulated. The engine should ask the user if he would
like to choose other get/set names or to cancel the transformation.

Issue Report

We reported all transformation issues detected in Eclipse. So far,
they confirmed some issues and rejected or marked others as
duplicate. We did not report the issues detected in JRRT since
there is no one in charge of it. One of the issues that we reported
to Eclipse is related to encapsulating a private field. According
to Fowler, only public fields can be encapsulated [2]. We cited
Fowler’s book to Eclipse developers and they answered that this
book is out of date. On the other hand, NetBeans suggests to
its developers this book to understand the refactorings.3 Another
issue that we reported to Eclipse was rejected and after our
argumentation they confirmed it. This kind of issue or anomaly
introduced by the refactoring engine is still somewhat difficult to
confirm by refactoring engine developers, because they implement
the refactorings based on their own definitions.

3. http://wiki.netbeans.org/Refactoring

Time

The time to evaluate the technique using SCA and DT oracles in
the refactoring implementations of Eclipse and JRRT was almost
the same. So, the oracles have a similar cost to execute. For some
kinds of refactorings, the time to evaluate one engine is higher than
the time to evaluate the other engine. The time may be related to
the number of transformations evaluated. For example, in the Push
Down Method refactoring, Eclipse rejected 8,094 transformations,
while JRRT applied all transformations. So, the time to evaluate
the transformations applied by JRRT is higher than the time of
Eclipse. In the Pull Up Field refactoring the engines rejected the
same number of transformations and the time of Eclipse is higher
than the JRRT’s time. Testing the refactorings implementations of
Eclipse is costlier than testing JRRT’s ones because we need to
create an Eclipse plugin application. Also, we find that the Eclipse
API used to execute the experiment has memory leak, which can
make slower its execution.

DOLLY with the New Constructs

To avoid state explosion, we adapted the scope for each kind of
refactoring and added some new constraints. We specified the new
constraints focusing on reducing the number of non-compilable
inputs. For example, a class cannot implement another class. The
following fact specifies this constraint.

fact aClassCannotImplementAnotherClass {
no c1: Class | some c2: Class | !isInterface[

c2] && c2 in c1·implement
}

The average rate of compilable programs in DOLLY 1.0 is
68.8% [14]. We added some constraints related to all constructs
of the Java metamodel implemented in DOLLY to reduce this rate
of uncompilable programs. After adding the new constraints, we
have reached a rate of 99.5% of compilable programs generated
by DOLLY with abstract methods, abstract classes, and interface.
In the Encapsulate Field refactoring 100% of the generated pro-
grams compile. The lowest rate is 97.2% in the Pull Up Method
refactoring.

Despite the fact that the new constraints have reduced the
number of Alloy instances, the Pull Up Field specification has
1,051,608 instances using a scope of three classes and two meth-
ods, fields, and packages. This small scope coupled with a high
number of Alloy instances indicates the expressiveness of DOLLY.
In the previous technique, DOLLY 1.0 generated at most 30,186
Alloy instances to generate useful programs to find bugs in the
refactoring implementations [14]. After the addition of the new
constructs, DOLLY had to deal with a number of Alloy instances
30 times higher than DOLLY 1.0, which increased the cost to test
the refactoring implementations. Furthermore, we have to deal
with memory leaks in the Eclipse API. To alleviate these problems
and reduce the costs to run the experiment we choose a skip of 25
to generate programs.

4.2.4 Threats to Validity
Next, we identify some threats to validity for the evaluation
performed.

Construct Validity

Construct validity refers to whether the transformation issues that
we have detected are indeed incorrect transformations performed

http://wiki.netbeans.org/Refactoring
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TABLE 4
Summary of the evaluation results of Eclipse and JRRT refactoring implementations with our technique using the SCA oracle; Refactoring = kind
of refactoring; Scope = scope used by DOLLY to generate programs; P = package; C = class; M = method; F = field; Alloy Instances = number of

Alloy instances generated by the Alloy Analyzer; GP (using skip of 25) = number of generated programs using skip of 25 in DOLLY; CP =
compilable generated programs; Transformation Issues = number of different kinds of issues related to incorrect transformations; Time = total time

to evaluate the refactoring implementations.

TABLE 5
Summary of the evaluation results of Eclipse and JRRT refactoring implementations with our technique using DT oracle; GP (using skip of 25) =
number of generated programs using skip of 25 in DOLLY; App. = applied transformations; BP = behavioral preserving applied transformations;
Reject. by = rejected transformations; Different/Equal transf. applied = the outputs of the engines are different/equal; Transf. Issues = number of

different kinds of issues related to incorrect transformations.

p u b l i c c l a s s A {
i n t f ;
p u b l i c i n t ge tF ( ) {

re turn 0 ;
}

}

Listing 12. Original version.

p u b l i c c l a s s A {
p r i v a t e i n t f ;
p u b l i c i n t ge tF ( ) {

re turn 0 ;
}
p u b l i c vo id s e t F ( i n t f ) {

t h i s . f = f ;
}

}

Listing 13. Resulting program.

Fig. 4. Encapsulating field B.f using Eclipse JDT 4.5 does not implement a correct get method because there is a method with the same signature.

by the refactoring engines. The definition of a transformation issue
is strictly related to the refactoring definition used by developers
of refactoring engines. They are not only concerned with imple-
menting the pure refactoring. Sometimes, they include features
that are not presented in the refactoring definitions. For example,
the developers of Eclipse agree on encapsulating a private field
while Fowler asserts in his book that only public fields can be
encapsulated [2].

Internal Validity

Our set of conditions to define the refactoring engines is not
complete. Our technique using the SCA oracle may hide possibly
detectable transformation issues. The technique using DT oracle
may hide some issues when one engine applies a transformation
that contains an issue and the other engine does not apply or the
output does not compile or preserve the program behavior. Our
issue categorizer may also hide some issues. The set of conditions
and the issue categorization rules can always evolve. The diversity

of the generated programs is strictly related to the number of
detected issues. The higher the diversity, more issues we can find.
So, the scope, constraints, and skip used by DOLLY control the
number of generated programs, and consequently may also hide
possible issues.

External Validity

We evaluated eight refactoring implementations of Eclipse and
JRRT. A survey carried out by Murphy et al. [34] shows that Java
developers commonly use Pull Up refactoring. We evaluated Pull
Up Field and Pull Up Method refactorings. We plan to evaluate
more kinds of refactorings and other refactoring engines, such as
NetBeans.

4.2.5 Answers to the Research Questions

Next, we answer our research questions.
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• Q1 Can the proposed technique using the DT and SCA
oracles detect transformation issues in the refactoring
engines?
Yes. The technique using DT oracle found one issue
related to transformation issue in the Pull Up Method of
Eclipse, one in the Push Down Method of Eclipse, one in
the Encapsulate Field of JRRT, one in the Pull Up Method
of JRRT, and one in the Push Down Method of JRRT. The
technique using the SCA oracle found three issues related
to transformation issue in the Encapsulate Field of Eclipse,
five in the Pull Up Method of Eclipse, two in the Push
Down Method of Eclipse, two in the Encapsulate Field of
JRRT, one in the Pull Up Method of JRRT, and five in the
Push Down Method of JRRT.

• Q2 Do the DT and SCA oracles detect the same issues?
The technique using the SCA oracle detected all issues
related to transformation issues detected by the technique
using DT oracle. DT technique did not detect three issues
in the Encapsulate Field of Eclipse, four in the Pull Up
Method of Eclipse, one in the Push Down Method of
Eclipse, one in the Encapsulate Field of JRRT, and four
in the Push Down Method of JRRT.

• Q3 What is the time to test the refactoring implementation
using the technique with DT and SCA oracles?
The oracles had a similar cost to test the refactoring
implementations in this study by using the technique with
DT and SCA oracles. The technique using DT oracle
took 75.83h to evaluate the refactoring implementations
of Eclipse and JRRT, while the technique using the SCA
oracle took 76.17h to evaluate the same implementations.

4.3 Using the input programs of Eclipse and JRRT
refactoring test suites

We manually analyzed the test assertions of Eclipse and JRRT to
identify their concern. We found that 32% of them are related
to overly strong conditions, 10% to overly weak conditions,
11% to transformation issues, 31% to overly weak conditions
and transformation issues, and 16% to other concerns. We also
performed another study, where we used programs from Eclipse
and JRRT refactoring test suites as input for our technique instead
of the DOLLY generated programs. We detected 23 overly strong
conditions (17 of them were not detected using the programs
generated by DOLLY), 6 bugs related to compilation errors, and
2 bugs related to behavioral changes previously undetected by
the developers. The developers did not find these bugs because
they may not have a systematic strategy to detect overly strong
conditions, even with useful input programs in their test suite.
Additionally, they may not have an automated oracle to check
for behavior preservation. We use SAFEREFACTORIMPACT as the
oracle to help us in this activity. Therefore, our technique can help
them to avoid those kinds of bugs.

5 RELATED WORK

Daniel et al. [15] proposed an approach for automated testing
refactoring engines. The technique is based on ASTGEN, a Java
program generator, and a set of programmatic oracles. To evaluate
the refactoring correctness, they implemented six oracles that eval-
uate the output of each transformation. For instance, the oracles
check for compilation errors and warning messages. There is

one oracle that evaluates behavior preservation. It checks whether
applying a refactoring to a program, its inverse refactoring to the
target program yields the same initial program. If they are syntac-
tically different, the refactoring engine developer has to manually
check whether they have the same behavior. They used the oracles
Differential Testing, Inverse Transformations, and Custom Oracles
to identify transformation issues. The Custom oracle is aware of
the structural changes that their corresponding refactorings should
make and thus check that the refactored program exhibits the ex-
pected changes. Our SCA oracle is based on their Custom oracle.
But they did not make available the refactoring definitions used
to implement this oracle. They evaluated the technique by testing
42 refactoring implementations and found three transformation
issues using Differential Testing and Inverse oracles, and only
one bug using the Custom oracle. We evaluated 8 refactoring
implementations and found 18 transformation issues (18 using
SCA oracle and 5 using DT oracle). They identified a total of
21 bugs in Eclipse JDT and 24 in NetBeans. In Eclipse JDT, 17
bugs were related to compilation errors, 3 bugs were related to
incomplete transformations (e.g. the Encapsulate field refactoring
did not encapsulate all field accesses), and 1 bug was related to
behavioral change. We found 17 bugs related to behavioral change
in 18 refactoring implementations of JRRT and Eclipse.

Jagannath et at. [21] presented the STG technique to reduce
the costs of bounded-exhaustive testing by skipping some test
inputs. They randomly select a skip up to 20 after generating each
program. They evaluated it using ASTGEN and found that the
technique took some seconds to find the first failure related to
compilation error or engine crash in the refactoring implementa-
tions using STG. We also included the skip parameter in DOLLY

to reduce the time to test the refactoring implementations and to
find the first failure. Different from them we use skips to identify
overly strong preconditions and transformation issues. Also, we
use a fixed skip that is set by the user while they use a random
skip. As our results are deterministic, we can execute the tests
again using the same skip to evaluate whether we have already
fixed the bugs. Moreover, we can execute using a different skip to
find some missed bugs. Finally, they did not measure the rate of
missed bugs using skips to generate programs different from our
work.

Later, Gligoric et al. [16] proposed UDITA, a Java-like lan-
guage that extends ASTGEN allowing users to describe properties
in UDITA using any desired mix of filtering and generating
style in opposed to ASTGEN that uses a purely generating style.
UDITA evolved ASTGEN to be more expressive and easier to
use, usually resulting in faster program generation as well. They
found four new bugs related to compilation errors in Eclipse in a
few minutes. However, the technique requires substantial manual
effort for writing test generators [17] since they are specified in a
Java-like language. Soares et al. [14] found that UDITA does not
generate some programs that JDOLLY generates using the same
scope and without skipping.

More recently Gligoric et at. [17] used real systems to reduce
the effort for writing test generators using the same oracles [16].
They found 141 bugs related to compilation errors in refactoring
implementations for Java and C in 285 hours. However, the
technique may be costly to apply the refactorings in large systems
and to minimize the failure into a small program to categorize the
bugs. Moreover, evaluating transformations on large real programs
is time consuming, and it would produce less accurate results.
We can use SAFEREFACTORIMPACT to automatically detect
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behavioral changes in their technique. SAFEREFACTORIMPACT

detected behavioral transformations applied on real systems that
even a well-defined manual inspection conducted by experts did
not detect [20], [36].

Previously [13], [14], we proposed a technique to test refac-
toring engines by detecting bugs related to compilation errors,
behavioral changes, and overly strong preconditions. It is based
on JDOLLY, an exhaustive program generator, a set of automated
oracles, such as SAFEREFACTOR [35], and differential testing to
identify overly strong preconditions. As opposed to ASTGEN

and UDITA that use a Java-like language, JDOLLY only needs
to declaratively specify the structures of the programs. However,
it may be costly to evaluate all test inputs. It took a total of
590 hours to detect 106 bugs related to compilation errors and
behavioral changes in 39 refactoring implementations. Moreover,
the technique does not test refactorings applied within method
level. In this work, we optimize the technique to reduce the costs of
testing. For example, using a skip of 25 in the program generator,
it reduces in 96% the time to test the refactoring implementations
while missing only 6% of the bugs.

Vakilian and Johnson [37] presented a technique to detect
usability problems in refactoring engines. It is based on refac-
toring alternate paths. They adapt critical incident technique to
refactoring tools and show that alternate refactoring paths are
indicators of the usability problems of refactoring tools. Their
technique manually found two usability problems related to overly
strong preconditions. We use SAFEREFACTORIMPACT to eval-
uates whether the applied transformation is behavior preserving.
Our technique automatically found 35 bugs related to overly strong
preconditions in Eclipse JDT and JRRT.

Rachatasumrit and Kim [38] studied the impact of a transfor-
mation on regression tests by using the version history of Java
open source projects. Among the evaluated research questions,
they investigated whether the regression tests are adequate for
refactorings in practice. They found that refactoring changes are
not well tested: regression test cases cover only 22% of impacted
entities. Moreover, they found that 38% of affected test cases
are relevant for testing the refactorings. We proposed SAFER-
EFACTORIMPACT that uses change impact analyses to guide the
test suite generation for only testing the methods impacted by a
transformation. Most of the tests generated by our tool are relevant
for evaluating the transformations considered in our work.

Schäfer et al. [8] proposed refactorings for concurrent pro-
grams. They have proved the correctness based on the Java
memory model. Currently, we do not deal with concurrency
since SAFEREFACTORIMPACT can only evaluate sequential Java
programs. However, they have demonstrated that some useful
refactorings are not influenced by concurrency. In those situations,
we can use SAFEREFACTORIMPACT. Later, they [6] implemented
a number of Java refactoring implementations in JRRT. They
aim to improve correctness of the refactoring implementations
of Eclipse. We evaluated five JRRT implementations and found
some bugs related to overly weak preconditions, overly strong
preconditions, and transformation issues.

6 CONCLUSION

In this work, we propose a technique to scale testing of refactoring
engines. It has a program generator, DOLLY [13], [14], [18], that
automatically generates programs as test input. Our technique can
detect bugs related to overly weak preconditions, overly strong

preconditions, and transformation issues related to the refactoring
definition. We propose a new version of DOLLY with two new
features: skip parameter and new Java constructs. Moreover, we
extend it to generate C programs. We present a strategy to reduce
the time to test the refactoring implementations by skipping some
consecutive test inputs [18]. Consecutive programs generated by
DOLLY tend to be very similar, potentially detecting the same
kind of bug. Thus, developers can set a parameter to skip some
programs to reduce the time to test the refactoring implemen-
tations. By skipping those programs, we can reduce the Time to
First Failure (TTFF), reducing the developer idle time. To improve
the expressiveness of DOLLY we add new Java constructs, such as
abstract classes and methods, and interface.

The previous techniques [13], [14] use a set of oracles to
evaluate the correctness of the transformations related to overly
strong preconditions, compilation errors, and behavioral changes.
It uses Differential Testing (DT oracle) to identify faults related
to overly strong preconditions. We propose an oracle to identify
overly strong preconditions by disabling some preconditions [19].
We also propose an oracle to identify behavioral changes [20]
based on change impact analysis and test generation. Finally,
we present two oracles to identify a new kind of bug related to
transformation issues in refactoring implementations. The oracles
are based on Differential Testing (DT) and Structural Change
Analysis (SCA).

We evaluated our technique to scale testing of refactoring
engines in 28 kinds of refactoring implementations of JastAdd
Refactoring Tools (JRRT) [6], Eclipse JDT (Java) and Eclipse
CDT (C). We found 119 bugs in a total of 49 bugs related to
compilation errors, 17 bugs related to behavioral changes, 35
bugs related to overly strong preconditions using DP and DT
techniques, and 18 transformation issues using SCA and DT
oracles. When using skips, the refactoring engine developer can
detect a number of bugs in a few hours. The developer can run the
technique again without skipping while fixing the detected bugs
in order to find some missed bugs. Moreover, we can reduce even
more the idle time of the developer. The technique finds the first
failure in the refactoring implementations in a few seconds using
a skip of 10 or 25. When there are many failures transformations
in a refactoring implementation, the TTFF is similar even varying
the skip to generate programs. So, the developer can find a bug in
a few seconds, fix the bug, run it again to find another bug, and so
on. By using this strategy, the bug categorization step is no longer
needed since there is only one failure in each execution. Before a
new release, the developer can run the technique without skip to
improve confidence that the implementation is correct.

Each precondition avoids incorrect transformations. Therefore,
all of them may be needed in the refactoring engines. Our tech-
nique reports to the developers a set of overly strong preconditions.
After that, they can reason about their proposed preconditions
to refine and slightly weak them. As a result, they improve the
applicability of their refactoring implementations by avoiding the
current scenario of only implementing the preconditions without
evaluating them.

In summary, we scale a technique to test refactoring engines
by improving limitations of previous techniques. These limitations
are related to the kinds of bugs that can be detected (some tech-
niques do not identify transformation issues [14] or overly strong
preconditions [16], [17]), time consumption [13], [14], program
generator (some techniques do not have an automated program
generator to generate the test inputs [17], [37] or the program
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generator is not exhaustive [15], [16], has a costly setup [15],
[16], or has a low expressiveness [14]), or some techniques need
more than one refactoring engine to evaluate a refactoring imple-
mentation [13]. Our technique uses an automated and exhaustive
program generator, DOLLY to generate the test inputs. We add
some features in DOLLY to reduce the time to test the refactoring
implementations by skipping some input programs, improve its
expressiveness by adding more Java constructs, and extend it to
generate C programs. We propose SAFEREFACTORIMPACT, an
oracle to identify bugs related to behavioral changes, and two
oracles to identify bugs related to transformations issues. Finally,
we propose an oracle to identify overly strong preconditions by
disabling some preconditions. The proposed oracle only needs
one engine and although it has the manual step of disabling the
preconditions, we automate this step by using aspects.
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