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Abstract—Word embeddings is a well known set of tech-
niques widely used in natural language processing (NLP), and
word2vec is a computationally-efficient predictive model to
learn such embeddings. This paper explores the use of word
embeddings in a new scenario. We create a vector representation
of Internet Domain Names (DNS) by taking the core ideas
from NLP techniques and applying them to real anonymized
DNS log queries from a large Internet Service Provider (ISP).
Our main objective is to find semantically similar domains only
using information of DNS queries without any other previous
knowledge about the content of those domains. We use the
word2vec unsupervised learning algorithm with a Skip-Gram
model to create the embeddings. And we validate the quality
of our results by expert visual inspection of similarities, and by
comparing them with a third party source, namely, similar sites
service offered by Alexa Internet, Inc.

Index Terms—DNS, Word embeddings, word2vec, Tensorflow,
Semantic Similarity, Natural Language Processing.

I. INTRODUCTION

The amount of time that people spend online has systemati-
cally increased in recent years [1]. To understand the behavior
of users in online content consumption is the focus of several
research. It has large implications to network design, online
business, and media industry [2]. Many studies apply machine
learning to historical patterns of network resource consump-
tion in order to extract knowledge about online customer
behavior [3], [4]. Due to the inaccessibility of the information,
few of these studies use the traces of DNS queries for this
purpose. The few exceptions are [5], [6], [7], [8], [9], where
none of them has as main objective to extract knowledge about
the semantic nature of the queried domains.

There are several Web tools that try to estimate the semantic
similarity between sites!. For example to provide web site
owners the possibility to find competitors for the same target
audience, and to advice end-users on alternative providers for
the same content. As a novel application, in this work we apply
word embeddings to Internet Domain Names traces in order
to find semantically similar domains without extra knowledge
about domains than its usage.

Uhttp://www.alexa.com/find-similar-sites/,  https://www.similarweb.com/,
http://www.similarsitesearch.com/, Google Similar Pages, etc.
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Word embeddings are a set of techniques that map word or
phrases of a vocabulary to vectors of real numbers. The idea is
that semantically similar words will be assigned nearby vectors
so that the model can leverage information learned about some
words to other similar words. This is equivalent to transform
a discrete space of atomic symbols with one dimension per
word to a continuous vector space with lower dimension. This
is a much more useful and tractable representation of text.
Word embeddings are typically applied to texts in the context
of natural language processing in tasks such as syntactic pars-
ing, language modeling, and predicting semantically related
words [10], [11]. In natural language the context of a word
is determined by the words used right after and before it in
a phrase, in our work we consider the domain names queried
by the same IP address after and before some domain name
as the context for this domain (i.e. the trace of DNS queries).

For this work we obtained DNS recursive server logs from
a large Internet Service Provider (ISP) with anonymized IP
addresses. These logs contain each query resolved by a farm of
servers. Each line of log indicates the time, the anonymized IP
address of the client, the queried domain, and the type of DNS
query (A, AAAA, MX, etc.). To create the word embedding for
the domains we use the word2vec [12] model implemented
using the Python Tensorflow library [13]. In order to evaluate
the quality of our results, we explore two alternatives: to have
an expert visual inspection of similarities, and to use the mean
average precision (MAP) metric to measure the mismatch of
similarities between our results and the results obtained from
a third party source, namely, similar sites service offered by
Alexa Internet, Inc. Using this technique we show that the
created embedding effectively embeds semantically similar
domains nearby each other and therefore it could be used to
build a recommender system, to predict the domains that will
be queried in the near future in order to, for example, detect
traffic anomalies or apply some cache mechanism.

The rest of the paper is organized as follows: Section II
introduces to current techniques to find semantically similar
domains; Section III explains the Domain Name System on the
Internet, its particularities for our problem, and the data used
in this work. Section IV introduces the basis of the word2vec
algorithm, its applications to other contexts, and how we
use it to solve our problem. Section V presents experiments
and results of applying word embedding to find semantically



similar domains in our dataset. Finally, Section VI discusses
future work and present main conclusions.

II. SEMANTIC SIMILARITY BETWEEN INTERNET DOMAIN
NAMES

The term semantic similarity is usually employed over sets
of words (texts) to measure the likeness of their meaning. In
the context of this paper we will define the semantic similarity
between domain names, as the distance between their semantic
content. For example, two news providers are expected to be
semantically similar, as well as two retail stores, and if they
offer the same category of products should be closer.

As previously mentioned, there are several web tools that
try to estimate this similarity. One of the most important in this
area is Alexa®. This site obtains traffic estimates based on data
from multiple web browser extensions and also from sites that
install a script that harvests traffic information for them. As we
will explain later, in this work we use the Alexa API service
in order to evaluate the quality of our similarity estimation.
Other example is SimilarWeb?, which shows many statistics
about web sites including similarity. They claim that obtain
data from four sources: a) a pool of monitored user devices,
b) data obtained directly from ISPs, c¢) web crawlers that scan
websites, and d) direct measurement from websites and mobile
apps connected to them. With respect to the similarity they
claim their system is based on website structure, link analysis,
user surfing behavior and user rankings. Also there is a Google
Chrome extension called Google Similar Pages, provided by
Google Inc., that also shows a few semantically similar pages
to the one being visited. Google does not disclose the data
sources but it is reasonable to think that they can use a mix
like SimilarWeb to provide this functionality.

A. Alexa Similarity Service

One of the main problems that we address is to evaluate
the quality of the semantic relations that we discover between
domains in our unsupervised process. In order to achieve
this objective, in this work we use the API service called
find similar sites, a feature offered by Alexa in its Audience
Overlap Tool. This service allows to query for a specific
domain name in order to know possible competitors based
on considering similar sites. In its paid version, this service
retrieves the top 100 most similar sites for a specific input
domain name.

For our research we built a tool that given the list of the top
used domains in our vocabulary, it retrieves the similar sites
from Alexa. More precisely, we queried for 5092 top domains
in our vocabulary, for which we were able to find a matching
in Alexa for 2085 of those domains (55%). The reason why
not all of our domains were found in Alexa could be one of
many causes, for instance that not all of them are Internet Web
sites or because our dataset contains domains that do not exist
any more, among others reasons.

Zhttp://www.alexa.com/find-similar-sites/
3http://www.similarsitesearch.com/

Figure 1 shows a web view of the service that displays the
top most 5 similar sites for amazon . com. The result list has
a default order by the Overlap Score value. The meaning of
this value according to Alexa is: the relative level of visitor
(audience) overlap between any site and the target site. A site
with a higher score shows higher audience overlap than a site
with a lower score. This order is important when considering
the evaluation mechanism. This mechanism is described in
more detail in Section V.

Similar Websites

Site Overlap Score Alexa Rank

amazon.com - 14
ebay.com 69 34
reddit.com 44 12
walmart.com 4 216
pinterestcom 40 67
twitter.com 38 16

Fig. 1. Similar Sites for Amazon.com according to Alexa. Retrieval date:
March, 2017.

Our approach to find the semantic similarity between do-
main names is to build a mathematical vector representation of
domains based on DNS traces data, and compute the similarity
of two domains as the cosine distance between the two vectors
that represent them. In next sections we will explain why DNS
traces include this valuable information, and how to obtain it.

III. DOMAIN NAMES ON INTERNET (DNS)

The DNS (Domain Name System) [14], [15] is a decen-
tralized service for naming computers and other resources
in a network. Each of these resources is assigned a domain
name which is a hierarchical string defining a node in a tree
structure. The domain name is formed by the labels of the tree
nodes traversed from the node to the root separated by points.
For example the domain name example.com has com as its
top level domain, and www.example.com as a sub-domain. The
DNS system is decentralized as the responsibility for resolving
each component of the domain name is delegated to a different
name server thus avoiding a single central database and a sin-
gle point of failure. Also there could be several domain servers
to resolve the same domain providing thus a fault tolerant
configuration. This system has been in use in the Internet
since 1985 and is one of the most essential services in the
network. In the Internet the most fundamental service provided
by DNS is to translate easily memorized domain names to IP
addresses. Each domain can have different sub-domains with



different type. The most common types are: A and AAAA that
correspond to IPv4 and IPv6 address translation respectively,
MX that define SMTP mail exchangers, NS that define other
name servers, CNAME that define domain name aliases and
PTR that are used for reverse DNS queries (for example to
query the domain name for a given IP address).

Each domain has at least one authoritative name server that
contains the original information about the domain and its sub-
domains. An authoritative name server only gives answers to
DNS queries from data that has been configured on that server.
Potentially, an authoritative name server could delegate a sub-
domain to other authoritative servers building a hierarchical
tree of authorities. On the top of the hierarchy are the root
DNS servers.

On the other hand, there are recursive DNS servers that are
capable of resolving queries about domain names, by means of
recursive queries to possibly several authoritative name servers
starting from the root servers. These servers usually cache
the results obtained to increase efficiency. The duration of the
cached data depends on the TTL (time to live) configuration
of each domain at the authoritative servers.

The client components of the DNS system are called DNS
resolvers. Resolvers usually query recursive servers to find an
answer, and also cache the result during the corresponding
domain TTL.

DNS is critical for Internet operation. It is a large and
complex system. Here we include a minimum description with
the aim of offering a self-contained reading. You can read [16]
for a deep explanation.

A. Our Data: DNS traces

The data used for this research was provided by a large
Internet Service Provider (ISP), with millions of Internet users,
who use the ISP’s recursive name servers. For this study we
analyze the queries log in these name servers, at 11 different
days collected from December 2012 to March 2013. Each
line of log data shows the date and time of the query, the
anonymized IP address of the client, the queried domain and
the type of DNS query requested by the client. Figure 2 shows
an example of some DNS queries from an anonymized IP
address.

Note that the amount of data collected in just one day
is extremely large. With more than 3.5 billions of queries,
58 millions of unique domain names, and 550 thousands of
unique IPs. Data across different days are pretty similar, with
a little increment with time, as shown in Figure 3(a) for 3
different days. A and AAAA record types correspond to more
than 90% of the queries in an average day (Figure 3(b)),
and other types are less relevant when studying user Web
navigation habits, therefore we filtered the data to keep only
these kind of queries (A and AAAA). For these record types
we can see a minimum between 5 and 6 a.m. and maximum
between 8 and 10 p.m. approx as it is shown in Figures 4(a)
and Figure 4(b) for the same three days.

Formally, the DNS log is a sequence of < IP;,d;,t; >,
where the client IP; queried the domain d; at time tj. In the

log there is a set of unique (anonymized) IPs representing each
client, ¢ € C, for each client we have a DNS trace, t. € T, that
is a sequence t. = {< dy,t1 >, < da,t3 >,...}. Our problem
is to learn a similarity function sim(d;,d;) between any two
domains d; and d;, using only the set of traces . This problem
is very similar to find semantically similar words, where the
trace of words are the phrases in texts. Following previous
results in natural language processing, word embedding tech-
niques like word2vec are shown effective for these kind of
problems.

But DNS traces are not exactly a sequence of sites visited
by clients, and this should have an impact in the expected
result. There are a few limitations with the data obtained from
the DNS recursive servers in this way. To take into account:

o First of all, DNS resolvers clients cache the requests so
we do not have information about how often a domain
is visited. We only have one request after the domain
cache times out and then it is cached again. Therefore,
the DNS traces are not a good source to measure the
period of usage of a domain, just the first access.

o Also, NAT enabled gateways hide the activity of many
users behind a single public IP address. This is very
common in business and residential connections, but not
in mobile services. It means that a trace can mix multiple
clients, in some cases thousands of them. Usually the
ISP assigns disjoint range of IPs to each kind of service,
therefore it is possible to separate business, residential
and mobile traces.

e It is a good practice of ISPs to assign a dynamic IP
address to each service, where the client needs to be
reconnected after a fixed period (for example 12 hours)
and a new IP is assigned. Therefore, an IP identifies a
service for a period, and a trace can be the concatenation
of session periods from several services.

e It is a good practice of Content Providers to use several
sub-domains in order to provide their content, moreover
they usually use external services to provide part of their
content (for example they use Content Delivery Networks
to provide static and video content). Therefore, when a
client access to a service, it usually adds several domains
to his trace (sub-domains of the provider and external
sources). This is very consistent between different clients
that access to the same service, but it is not a simple task
to extract the knowledge of the service used by the client
from this trace.

o In a similar way, there are applications in the client device
that generates traffic, and therefore queries in the trace,
without an action of the user (for example antivirus,
email clients, etc.). These queries are mixed in the traces
and can help to find similarity between traces, hence the
similarity between domains.

In order to mitigate the impact of these limitations in our
procedure, we preprocess the DNS traces in the following way:

e We use a subset of the data, with queries done by
IPs that belong to some known ranges corresponding to



21-Mar-2013 06:06:47.
21-Mar-2013 06:06:48.
21-Mar-2013 06:06:53.
21-Mar-2013 06:08:10.
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149
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728

client
client
client
client

<anonymized
<anonymized
<anonymized
<anonymized

ip>:
ip>:
ip>:
ip>:

query: apps.facebook.com IN A
query: profile.ak.fbcdn.net IN A
query: pixel.facebook.com IN A
query: jacaranda.ceibal.edu.uy IN A

Fig. 2. Example of some DNS queries from an anonymized IP address one day.
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Fig. 3. Main statistics for DNS record types.

residential or mobile services*. This is a simplification
in order to minimize the amount of devices connected
with the same IP and in order to study true user’s usage
patterns.

o Other simplification in our study has been the reduction of
heterogeneity coming from the sub-domains. We truncate
the last labels of a domain in the following way: if the
top label is a country code (ccTLD) then the domain
is truncated to the first 3 levels, else (non ccTLD) the
domain is truncated to the first 2 levels.

o We identified top domains like google, facebook,
youtube, whatsapp, skype, bing, yahoo,
root—-servers, akamaid, verisign (among
others) that are queried all the time in any context,
and do not give us any relevant value. These domains
are included in a fixed black-list, and excluded when
building the input document for the vector representation
training. The idea behind this is similar to the one used
when processing natural language data text, that there

4Even if the client IPs are anonymized, we know the type of service
associated with each address.
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Fig. 4. DNS queries per hour.

are a set of words (common or stop words) like the,
is, at, which (among others) that are filtered previously
because are not really important.

o A second set of domains are added to the black-list and
are those that despite not being top domains are domains
that most of the time are requested automatically (the list
of resources after accessing a web page for instance) and
not by a user. For example external sources used by a
Content Provider. In order to identify these domains we
apply the following empirical rule: domains that 90% of
the time or more are queried immediately after a previous
domain (3 seconds window) are added to the black-list
for this reason.

After preprocessing the data we obtain a depurated set of
DNS traces, that we will use as input in word embedding
training process in order to obtain our vector representation of
domains.

IV. WORD EMBEDDING TECHNIQUES

In this section, we present our method to create a vector
representation of domains, but previously we will introduce
the basis of word embedding techniques and its applications.

A. Word2vec Basis

Word2vec is a very computationally-efficient predictive
model for learning word embeddings [12], [17], [18]. There
are two main variants known as Continuous Bag-of-Words



(CBOW) and Skip-Gram. These models are similar but CBOW
is used to predict target words from source context words,
while the Skip-Gram model does the inverse and predicts
source context words from the target words. Both have shown
to be useful for extracting similarity of words in a text. In our
case we used the Skip-Gram model exclusively so we will
concentrate on that and skip the CBOW model.

As mentioned, the objective of the Skip-Gram model is to
create an embedding useful to predict context words from
source words. Thus, given a sequence of training words as
w1y, Wa, . .., wr, the Skip-Gram model objective is to maxi-
mize the average log-likelihood:

T
%Z > logp(wigw)

t=1 —c<j<c,j#0

where c is the size of the context training window. The number
of possible training samples increases with c. The p(w;4;|w;)
probability function is defined as the softmax function:

p(uwifw;) = V?/xp [score(w;, w;)]

Zw:l exp [SCOI'C(’LU, w])]
where W is the size of the vocabulary. The score is a measure
of the compatibility of w; and w;. Usually the inner product
of their vector representation is used. This calculation is
usually impractical as the cost of calculating V log p(w;|w;)
is proportional to W which is usually large (order 10* in our
case). To overcome this problem we use Noise Contrastive
Estimation (NCE) which approximately maximizes the log of
Eq.(1). The objective of NCE is:

6]

k
IOgU(U;uivaj) + Z IEwNPn(w) (IOgU(v:uT'ij)>

w=1

where v; and v} are the embedding vectors of ¢ after and before
the maximization step, ngvj is their inner product and o is
the binary logistic regression function:

1

Cl4e

The idea is to differentiate the word w; from draws from
the noise distribution P, (w) using logistic regression, where
there are k noise (negative) samples for each data sample.

Several variants of this simple algorithm were been devel-
oped in the last years. Please read [12] for a deep explanation
of the algorithm. And read [19] as an example of extension
to a paragraph vectorization method (instead of word vector-
ization). Extensions beyond natural language processing are
presented below.

o(x)

B. Applications of word2vec Beyond Words

Word2vec inspired the application of neural network mod-
els in other contexts. For example, in [20] the authors propose
a method called med2vec to represent medical codes and
visits into a vector space. In [21] is presented the emo ji2vec
method to create a vector representation of emojis. A closer

work to our paper is present in [22], where the authors study
how to create a vector model of mobile applications using the
usage pattern of several clients. They extend the Continuous
Bag-of-Words (CBOW) in order to take into account the time
interval between the usage of successive apps. They call their
procedure app2vec. To consider a weight about time into
the context of a DNS trace could help to map the relative
relevance of similar domains. We expect to try this variant in
future research.

C. Vector Representation of Domain Names

As initial work, in this paper we apply the original Skip-
Gram model. We focus our work in understanding DNS traces,
and how to preprocess them in order to extract their value.
In future work we expect to compare different models and
different quality measures in order to improve the current
result.

V. EXPERIMENTS AND RESULTS

Considering the 11 days of available logs, we have a dataset
of 40 billions of queries. In this work, we only use the logs of
a day (March 21% 2013) as input of the training process, with
3.5 billions of queries. From these queries, we obtain the DNS
traces (grouping by IP), and we preprocess them (as explained
in Section III-A) in order to generate the final input. The final
input is a sequence of 53 millions of domains, where the
unique domains are 1.4 million. As expected, there is a large
variation of popularity between domains. Figure 5 and Figure 6
show the cumulative percentages of requests per domain,
where domains are represented by popularity position (from
left to right) on the x-axis. We can see that top 5 thousand
domains accumulate 75% of the total traffic, top 798 domains
accumulate the 60% and top 10 domains accumulate the 10%.
Due to the logarithmic characteristic of the function, we are
able to work with a reduced vocabulary but very representative
of the total traffic. Therefore, to compute similarities, we
worked with a vocabulary built from the top 40 thousand most
popular domains, which represent 88% approximately of the
total amount of the requests under study.

Cumulative percentage

NNNN AN ISR R AARNARRARRYIESRATRARBE T BE

Fig. 5. 60% cumulative percentage of requests per domain.

The input is used in the training phase of the original Skip-
Gram variant of word2vec model. We used an implementa-
tion of the standard word2vec algorithm in Tensorflow [13].
The core of the algorithm was not changed, we only mod-
ified the batch generation procedure. Instead of processing



Cumulative percentage

Fig. 6. 100% cumulative percentage of requests per domain.

a continuous flow of text, as in the standard case, we have
logs consisting of a source IP address and a list of requested
domain names. In this case the context of a domain can only
be constructed by the domains requested by the same user in
the same time slot. So the batch generation algorithm takes
this into consideration to avoid mixing domains requested by
different users. Main parameters in training are set as: a vo-
cabulary size of 40000, an embedding size of 128 (dimension
of the embedding vector), a learning rate of 0.5, and a skip
window of 3 (words to consider left and right in the context).
The server used is a Intel(R) Xeon(R) 4860@2.27GHz with
16 cores and 20 GiB RAM. The training takes 7 hours, and
the reduction in loss of the process is shown in Figure 7.

0,000 2000k 4000k 6000k 8000k 1.000M 1.200M La00M 1.600M 1.800M

Fig. 7. Error in Skip-Gram training phase.

The output of the procedure is a vector representation in
R128 of the top 40000 domains. From this vector represen-
tation we compute the cosine distance between domains, and
we extract the top ten nearest domains for each one. We hope
that this list of nearest domains will show semantic similarity
properties. One of the main problems we need to address is to
know how good are the semantic relations between domains
that we discover. Namely, given the calculated set of nearest
domains for a specific domain, we need to validate whether
domains in this set are really semantically similar domains
or not. In order to achieve this objective, in this paper we
explore two alternatives: to have an expert visual inspection
of similarities, and to measure the mismatch of similarities
with a third party source.

A. Visual Inspection: Analogies Through Vector Operations

In the original word2vec paper [17], it was mentioned that
the linear structure of the Skip-Gram model allows analogical
reasoning using simple vector operations. For example the
addition of vectors works as an AND logical function: the

words near to the addition of two vectors will be words that
are close to both original words. In our case, domains close
to the addition of the vectors that represent two particular
domains will be the ones that are accessed in conjunction
with the added domains. Also it was shown that other analo-
gies were possible where for example the vectors for words
king + man — woman = queen. We show in Table I some
simple addition analogies between domains, and in Table II
some more complex analogies using addition and subtraction.
In every case we show one of the 10 domains nearest to
the resulting vector. Visual inspection verifies that our vector
representation embed semantic relationship between domains.

B. Mismatch of Similarities with a Third Party: Alexa

As explained in Section II-A, we use the service called find
similar sites by Alexa in order to retrieve the ordered top 100
most similar sites for a specific input domain name. From
visual inspection on these lists, it is clear that only the first
similar domains are relevant, followed by popular or generic
domains. Therefore we will consider only the first kaepa do-
mains as true similar domains for each domain (varying kacar)-
We have this information for 2085 domains of our vocabulary
(of 40000 domains). During the training phase, our evaluation
procedure uses this external, but well trusted information from
Alexa, to give some measure of quality. To be more accurate,
periodically, every 10000 optimization steps and for all the
2085 domains that we were able to get information from
Alexa’s service, we compare the similarities between the actual
Alexa’s response and the predicted similarities found using our
implementation.

The metric used in order to perform this comparison is the
Mean Average Precision (MAP) [23]. This metric is chosen
mainly because it takes into account the order in the similarity
list. Some of the characteristics we were looking and that this
metric has are:

o It assigns values between 0 and 1.

o If both similarities lists are identical, then its result is 1.

o If both similarities lists are disjoint, that is, if none of
the domains in our calculated similarity list are present
in Alexa’s list, then its result is O.

e Order in predicted list matters. Suppose we have com-
puted a list of k£ similar domains, and the top half of
this list also appears in the Alexa’ service. Now, suppose
we have a second similarity list where the matching with
Alexa appears only for last half of the list. Despite for
both lists we have matched k/2 domains with Alexa, we
want that the metric when evaluating the first list to be
higher than for the second list. That is because the k/2
matched domains for the first list are located above in
the ordered list, that indicates that similarities for those
domains are more accurate than the similarities for the
k/2 matches in the second list.

A lack of the MAP metric is that the order of the actual
list does not matter. The metric uses the Alexa’s list as a set
without order, where it is the same to have a coincidence with
first or last domains in the set. We will mitigate this problem



TABLE I

LOGICAL ANALOGIES USING ADDITION.

U1

U2

v1 + V2

Ministry of tourism of Uruguay
(turismo.gub.uy)

Ministry of tourism of Argentina
(turismo.gov.ar)

Argentina’s migration office
(migraciones.gov.ar)

Ministry of tourism of Uruguay
(turismo.gub.uy)

Ministry of tourism of Argentina
(turismo.gov.ar)

Uruguayan travel site
(pasaporteuruguay.com)

City government
(montevideo.gub.uy)

Bus routes finder
(montevideobus.com.uy)

City maps
(mapred.com)

Airline Hotel booking Travel information
(lan.com) (booking.com) (tripadvisor.com)
TABLE II
LOGICAL ANALOGIES USING ADDITION AND SUBTRACTION.
1 V2 U3 V1 + V2 — U3

City government Bus terminal

Other city government | Bus line connecting cities

(montevideo.gub.uy) (trescruces.com.uy) (rocha.gub.uy) (copsa.com.uy)
City government Bus terminal Other city government Post site
(montevideo.gub.uy) (trescruces.com.uy) (rocha.gub.uy) (correo.com.uy)
Shopping mall in city A City B government City A government Bus terminal in city B
(puntashopping.com.uy) (montevideo.gub.uy) (maldonado.gub.uy) (trescruces.com.uy)

Soccer site
(tenfield.com)

Soccer club A fan page
(campeondelsiglo.com)

Other soccer site
(ovacion.com.uy)

Soccer club B fan page
(lavozdenacional.com)

by varying the k,ctnq; value and evaluating the impact into
the M APQFk value.

Said this, we present the formula for the MAP metric. As
explained, we have a set of domains, d € D, for which we
known the actual ordered list of top Ky similar domains
from Alexa, and an ordered list of predicted top & similar do-
mains in our vector representation space. In order to compare
these two lists of (actual and predicted) similar domains for
a specific domain d, we use the Average Precision (AP) over
all possible recall values:

k
AP@k|g =" P(n)Ar(n),
n=1
where n is a position in the predicted list of similar domains
of d, k is the size of the predicted list, P(n) is the precision
considering only the first n domains in the list, and Ar(n)
is the change in recall from domains n — 1 to n. Precision
and Recall metrics come from information retrieval theory,
see their definition in [23].

With the Mean Average Precision (MAP), we summarize
the comparison of actual and predicted lists for all available
domains. Mean average precision for a set of similar domains
is the mean of the average precision scores for each domain:

> aep APQE|4

D )
where d € D is a domain for which we known the top kqctyal
actual similar domains from Alexa, and an ordered list of
predicted top k similar domains in our vector representation
space. You can refer to [23] to see detailed explanation about
mean average precision and the formula above.

MAPQk =

We evaluate the M APQk metric for several values of
k and kgcpuqr, considering the first kgepyq Similarities from
Alexa as a true, and the k£ similarities from our final vector
representation as a prediction. Figure 8 shows the result. For
example, the most similar domain in Alexa and the most
similar domain in our vector representation are the same in
67.5% of the evaluated cases (i.e. MAPQl1 = 0.675 with
kactuar = 1). Interpretation of larger values of k and kgcpyq 18
not so trivial, for example M APQ5 = 0.515 with kgcpyar = 3
means that an a half of the 5 predicted similar domains are
in the actual list of 3 domains, but this is weighted by the
position in the list, being more important the coincidences
in first places. From these results, it is clear that there are
several coincidences between the two similarities sets, and
again it verifies that our vector representation embed semantic
relationship between domains.

VI. CONCLUSIONS

In this work we show that the use of the word2vec
unsupervised learning algorithm is a viable alternative to find
semantically similar domains using only information about
DNS queries. To implement this, we use the word2vec
algorithm with a Skip-Gram model using the Tensorflow
library. To evaluate the quality of our results, we explore two
alternatives: to have an expert visual inspection of similarities,
and to use the mean average precision (MAP) metric to
measure the mismatch of similarities between our predicted
similarities and the similarities obtained from a third party
source, the find similar sites service provided by Alexa. In both
cases we find acceptable results that substantiate our approach.
For example, the most similar domain in Alexa and the most
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Fig. 8. MAP@k metric for several values of k and kgctyqi-

similar domain in our vector representation are the same in
67.5% of the evaluated cases.

This approach has several advantages over other prior art
options, if DNS log data from the ISP can be obtained. For
example, it does not require to obtain client level data via
browser extensions or mobile apps reducing both development
and deployment efforts. Moreover, due to the use of the
word2vec algorithm and the Tensorflow library, we can scale
to a very large volume of data points thus improving the
algorithm accuracy. In our work, we use a dataset with 3.5
billions of DNS queries. Lastly the learning process is mostly
unsupervised only possibly needing intervention to validate
the obtained results.

We see as future work the possibility to modify the
word2vec basic algorithm to include the time between
DNS queries as a weight factor that could help to map the
relative relevance of similar domains. This is the approach
taken by the app2vec algorithm [22] for example. We also
consider trying the CBOW model of word2vec to compare
the obtained results. Lastly we see as important to try other
quality measures of the obtained results to get a clearer view
of the accuracy of the algorithm.
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